MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrev2 Unicode version

Theorem fsumrev2 12493
Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumrev2.1  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumrev2.2  |-  ( j  =  ( ( M  +  N )  -  k )  ->  A  =  B )
Assertion
Ref Expression
fsumrev2  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N
) B )
Distinct variable groups:    A, k    B, j    j, k, M   
j, N, k    ph, j,
k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumrev2
StepHypRef Expression
1 sum0 12443 . . . . 5  |-  sum_ j  e.  (/)  A  =  0
2 sum0 12443 . . . . 5  |-  sum_ k  e.  (/)  B  =  0
31, 2eqtr4i 2411 . . . 4  |-  sum_ j  e.  (/)  A  =  sum_ k  e.  (/)  B
4 sumeq1 12411 . . . 4  |-  ( ( M ... N )  =  (/)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ j  e.  (/)  A )
5 sumeq1 12411 . . . 4  |-  ( ( M ... N )  =  (/)  ->  sum_ k  e.  ( M ... N
) B  =  sum_ k  e.  (/)  B )
63, 4, 53eqtr4a 2446 . . 3  |-  ( ( M ... N )  =  (/)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... N ) B )
76adantl 453 . 2  |-  ( (
ph  /\  ( M ... N )  =  (/) )  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N
) B )
8 fzn0 11003 . . 3  |-  ( ( M ... N )  =/=  (/)  <->  N  e.  ( ZZ>=
`  M ) )
9 eluzel2 10426 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
109adantl 453 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
11 eluzelz 10429 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1211adantl 453 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
1310, 12zaddcld 10312 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( M  +  N )  e.  ZZ )
14 fsumrev2.1 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
1514adantlr 696 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
16 fsumrev2.2 . . . . 5  |-  ( j  =  ( ( M  +  N )  -  k )  ->  A  =  B )
1713, 10, 12, 15, 16fsumrev 12490 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) ) B )
1810zcnd 10309 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
1912zcnd 10309 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
2018, 19pncand 9345 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( M  +  N )  -  N )  =  M )
2118, 19pncan2d 9346 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( M  +  N )  -  M )  =  N )
2220, 21oveq12d 6039 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) )  =  ( M ... N
) )
2322sumeq1d 12423 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  sum_ k  e.  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) ) B  =  sum_ k  e.  ( M ... N ) B )
2417, 23eqtrd 2420 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... N ) B )
258, 24sylan2b 462 . 2  |-  ( (
ph  /\  ( M ... N )  =/=  (/) )  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N ) B )
267, 25pm2.61dane 2629 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   (/)c0 3572   ` cfv 5395  (class class class)co 6021   CCcc 8922   0cc0 8924    + caddc 8927    - cmin 9224   ZZcz 10215   ZZ>=cuz 10421   ...cfz 10976   sum_csu 12407
This theorem is referenced by:  fsum0diag2  12494  efaddlem  12623  aareccl  20111
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-fz 10977  df-fzo 11067  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-sum 12408
  Copyright terms: Public domain W3C validator