MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumshft Unicode version

Theorem fsumshft 12242
Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumshft.5  |-  ( j  =  ( k  -  K )  ->  A  =  B )
Assertion
Ref Expression
fsumshft  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K )
) B )
Distinct variable groups:    A, k    B, j    j, k, K   
j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumshft
StepHypRef Expression
1 fsumshft.5 . 2  |-  ( j  =  ( k  -  K )  ->  A  =  B )
2 fzfid 11035 . 2  |-  ( ph  ->  ( ( M  +  K ) ... ( N  +  K )
)  e.  Fin )
3 ovex 5883 . . . . 5  |-  ( j  -  K )  e. 
_V
4 eqid 2283 . . . . 5  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )
53, 4fnmpti 5372 . . . 4  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K
) )
65a1i 10 . . 3  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K ) ) )
7 ovex 5883 . . . . 5  |-  ( k  +  K )  e. 
_V
8 eqid 2283 . . . . 5  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  =  ( k  e.  ( M ... N
)  |->  ( k  +  K ) )
97, 8fnmpti 5372 . . . 4  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  Fn  ( M ... N )
10 simprr 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  =  ( j  -  K ) )
1110oveq1d 5873 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  =  ( ( j  -  K )  +  K ) )
12 elfzelz 10798 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  j  e.  ZZ )
1312ad2antrl 708 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ZZ )
14 fsumrev.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  ZZ )
1514adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  K  e.  ZZ )
16 zcn 10029 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  CC )
17 zcn 10029 . . . . . . . . . . . . . 14  |-  ( K  e.  ZZ  ->  K  e.  CC )
18 npcan 9060 . . . . . . . . . . . . . 14  |-  ( ( j  e.  CC  /\  K  e.  CC )  ->  ( ( j  -  K )  +  K
)  =  j )
1916, 17, 18syl2an 463 . . . . . . . . . . . . 13  |-  ( ( j  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( j  -  K )  +  K
)  =  j )
2013, 15, 19syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( ( j  -  K )  +  K
)  =  j )
2111, 20eqtr2d 2316 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  =  ( k  +  K ) )
22 simprl 732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
2321, 22eqeltrrd 2358 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
24 fsumrev.2 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
2524adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  M  e.  ZZ )
26 fsumrev.3 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
2726adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  N  e.  ZZ )
2813, 15zsubcld 10122 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( j  -  K
)  e.  ZZ )
2910, 28eqeltrd 2357 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ZZ )
30 fzaddel 10826 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3125, 27, 29, 15, 30syl22anc 1183 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3223, 31mpbird 223 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ( M ... N ) )
3332, 21jca 518 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) )
34 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  =  ( k  +  K ) )
35 simprl 732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ( M ... N ) )
3624adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  M  e.  ZZ )
3726adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  N  e.  ZZ )
38 elfzelz 10798 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
3938ad2antrl 708 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ZZ )
4014adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  K  e.  ZZ )
4136, 37, 39, 40, 30syl22anc 1183 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
4235, 41mpbid 201 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4334, 42eqeltrd 2357 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4434oveq1d 5873 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  -  K
)  =  ( ( k  +  K )  -  K ) )
45 zcn 10029 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  k  e.  CC )
46 pncan 9057 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( ( k  +  K )  -  K
)  =  k )
4745, 17, 46syl2an 463 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  +  K )  -  K
)  =  k )
4839, 40, 47syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( ( k  +  K )  -  K
)  =  k )
4944, 48eqtr2d 2316 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  =  ( j  -  K ) )
5043, 49jca 518 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) )
5133, 50impbida 805 . . . . . . 7  |-  ( ph  ->  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) ) )
5251opabbidv 4082 . . . . . 6  |-  ( ph  ->  { <. k ,  j
>.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }  =  { <. k ,  j
>.  |  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) } )
53 df-mpt 4079 . . . . . . . 8  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) }
5453cnveqi 4856 . . . . . . 7  |-  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  =  `' { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }
55 cnvopab 5083 . . . . . . 7  |-  `' { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }  =  { <. k ,  j
>.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }
5654, 55eqtri 2303 . . . . . 6  |-  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  =  { <. k ,  j >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) }
57 df-mpt 4079 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  =  { <. k ,  j >.  |  ( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) }
5852, 56, 573eqtr4g 2340 . . . . 5  |-  ( ph  ->  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  =  ( k  e.  ( M ... N ) 
|->  ( k  +  K
) ) )
5958fneq1d 5335 . . . 4  |-  ( ph  ->  ( `' ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  Fn  ( M ... N )  <->  ( k  e.  ( M ... N
)  |->  ( k  +  K ) )  Fn  ( M ... N
) ) )
609, 59mpbiri 224 . . 3  |-  ( ph  ->  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  Fn  ( M ... N
) )
61 dff1o4 5480 . . 3  |-  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N )  <->  ( (
j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K ) )  /\  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  Fn  ( M ... N
) ) )
626, 60, 61sylanbrc 645 . 2  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
63 oveq1 5865 . . . 4  |-  ( j  =  k  ->  (
j  -  K )  =  ( k  -  K ) )
64 ovex 5883 . . . 4  |-  ( k  -  K )  e. 
_V
6563, 4, 64fvmpt 5602 . . 3  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  (
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) `  k )  =  ( k  -  K ) )
6665adantl 452 . 2  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) `  k )  =  ( k  -  K ) )
67 fsumrev.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
681, 2, 62, 66, 67fsumf1o 12196 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {copab 4076    e. cmpt 4077   `'ccnv 4688    Fn wfn 5250   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   CCcc 8735    + caddc 8740    - cmin 9037   ZZcz 10024   ...cfz 10782   sum_csu 12158
This theorem is referenced by:  fsumshftm  12243  binomlem  12287  dvtaylp  19749  bpolydiflem  24789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator