MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumshft Unicode version

Theorem fsumshft 12258
Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumshft.5  |-  ( j  =  ( k  -  K )  ->  A  =  B )
Assertion
Ref Expression
fsumshft  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K )
) B )
Distinct variable groups:    A, k    B, j    j, k, K   
j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumshft
StepHypRef Expression
1 fsumshft.5 . 2  |-  ( j  =  ( k  -  K )  ->  A  =  B )
2 fzfid 11051 . 2  |-  ( ph  ->  ( ( M  +  K ) ... ( N  +  K )
)  e.  Fin )
3 ovex 5899 . . . . 5  |-  ( j  -  K )  e. 
_V
4 eqid 2296 . . . . 5  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )
53, 4fnmpti 5388 . . . 4  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K
) )
65a1i 10 . . 3  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K ) ) )
7 ovex 5899 . . . . 5  |-  ( k  +  K )  e. 
_V
8 eqid 2296 . . . . 5  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  =  ( k  e.  ( M ... N
)  |->  ( k  +  K ) )
97, 8fnmpti 5388 . . . 4  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  Fn  ( M ... N )
10 simprr 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  =  ( j  -  K ) )
1110oveq1d 5889 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  =  ( ( j  -  K )  +  K ) )
12 elfzelz 10814 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  j  e.  ZZ )
1312ad2antrl 708 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ZZ )
14 fsumrev.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  ZZ )
1514adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  K  e.  ZZ )
16 zcn 10045 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  CC )
17 zcn 10045 . . . . . . . . . . . . . 14  |-  ( K  e.  ZZ  ->  K  e.  CC )
18 npcan 9076 . . . . . . . . . . . . . 14  |-  ( ( j  e.  CC  /\  K  e.  CC )  ->  ( ( j  -  K )  +  K
)  =  j )
1916, 17, 18syl2an 463 . . . . . . . . . . . . 13  |-  ( ( j  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( j  -  K )  +  K
)  =  j )
2013, 15, 19syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( ( j  -  K )  +  K
)  =  j )
2111, 20eqtr2d 2329 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  =  ( k  +  K ) )
22 simprl 732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
2321, 22eqeltrrd 2371 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
24 fsumrev.2 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
2524adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  M  e.  ZZ )
26 fsumrev.3 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
2726adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  N  e.  ZZ )
2813, 15zsubcld 10138 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( j  -  K
)  e.  ZZ )
2910, 28eqeltrd 2370 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ZZ )
30 fzaddel 10842 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3125, 27, 29, 15, 30syl22anc 1183 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3223, 31mpbird 223 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ( M ... N ) )
3332, 21jca 518 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) )
34 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  =  ( k  +  K ) )
35 simprl 732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ( M ... N ) )
3624adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  M  e.  ZZ )
3726adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  N  e.  ZZ )
38 elfzelz 10814 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
3938ad2antrl 708 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ZZ )
4014adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  K  e.  ZZ )
4136, 37, 39, 40, 30syl22anc 1183 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
4235, 41mpbid 201 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4334, 42eqeltrd 2370 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4434oveq1d 5889 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  -  K
)  =  ( ( k  +  K )  -  K ) )
45 zcn 10045 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  k  e.  CC )
46 pncan 9073 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( ( k  +  K )  -  K
)  =  k )
4745, 17, 46syl2an 463 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  +  K )  -  K
)  =  k )
4839, 40, 47syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( ( k  +  K )  -  K
)  =  k )
4944, 48eqtr2d 2329 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  =  ( j  -  K ) )
5043, 49jca 518 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) )
5133, 50impbida 805 . . . . . . 7  |-  ( ph  ->  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) ) )
5251opabbidv 4098 . . . . . 6  |-  ( ph  ->  { <. k ,  j
>.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }  =  { <. k ,  j
>.  |  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) } )
53 df-mpt 4095 . . . . . . . 8  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) }
5453cnveqi 4872 . . . . . . 7  |-  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  =  `' { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }
55 cnvopab 5099 . . . . . . 7  |-  `' { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }  =  { <. k ,  j
>.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }
5654, 55eqtri 2316 . . . . . 6  |-  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  =  { <. k ,  j >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) }
57 df-mpt 4095 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  =  { <. k ,  j >.  |  ( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) }
5852, 56, 573eqtr4g 2353 . . . . 5  |-  ( ph  ->  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  =  ( k  e.  ( M ... N ) 
|->  ( k  +  K
) ) )
5958fneq1d 5351 . . . 4  |-  ( ph  ->  ( `' ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  Fn  ( M ... N )  <->  ( k  e.  ( M ... N
)  |->  ( k  +  K ) )  Fn  ( M ... N
) ) )
609, 59mpbiri 224 . . 3  |-  ( ph  ->  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  Fn  ( M ... N
) )
61 dff1o4 5496 . . 3  |-  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N )  <->  ( (
j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K ) )  /\  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  Fn  ( M ... N
) ) )
626, 60, 61sylanbrc 645 . 2  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
63 oveq1 5881 . . . 4  |-  ( j  =  k  ->  (
j  -  K )  =  ( k  -  K ) )
64 ovex 5899 . . . 4  |-  ( k  -  K )  e. 
_V
6563, 4, 64fvmpt 5618 . . 3  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  (
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) `  k )  =  ( k  -  K ) )
6665adantl 452 . 2  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) `  k )  =  ( k  -  K ) )
67 fsumrev.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
681, 2, 62, 66, 67fsumf1o 12212 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {copab 4092    e. cmpt 4093   `'ccnv 4704    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   CCcc 8751    + caddc 8756    - cmin 9053   ZZcz 10040   ...cfz 10798   sum_csu 12174
This theorem is referenced by:  fsumshftm  12259  binomlem  12303  dvtaylp  19765  bpolydiflem  24861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175
  Copyright terms: Public domain W3C validator