MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumshft Structured version   Unicode version

Theorem fsumshft 12555
Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumshft.5  |-  ( j  =  ( k  -  K )  ->  A  =  B )
Assertion
Ref Expression
fsumshft  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K )
) B )
Distinct variable groups:    A, k    B, j    j, k, K   
j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumshft
StepHypRef Expression
1 fsumshft.5 . 2  |-  ( j  =  ( k  -  K )  ->  A  =  B )
2 fzfid 11304 . 2  |-  ( ph  ->  ( ( M  +  K ) ... ( N  +  K )
)  e.  Fin )
3 ovex 6098 . . . . 5  |-  ( j  -  K )  e. 
_V
4 eqid 2435 . . . . 5  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )
53, 4fnmpti 5565 . . . 4  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K
) )
65a1i 11 . . 3  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K ) ) )
7 ovex 6098 . . . . 5  |-  ( k  +  K )  e. 
_V
8 eqid 2435 . . . . 5  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  =  ( k  e.  ( M ... N
)  |->  ( k  +  K ) )
97, 8fnmpti 5565 . . . 4  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  Fn  ( M ... N )
10 simprr 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  =  ( j  -  K ) )
1110oveq1d 6088 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  =  ( ( j  -  K )  +  K ) )
12 elfzelz 11051 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  j  e.  ZZ )
1312ad2antrl 709 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ZZ )
14 fsumrev.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  ZZ )
1514adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  K  e.  ZZ )
16 zcn 10279 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  CC )
17 zcn 10279 . . . . . . . . . . . . . 14  |-  ( K  e.  ZZ  ->  K  e.  CC )
18 npcan 9306 . . . . . . . . . . . . . 14  |-  ( ( j  e.  CC  /\  K  e.  CC )  ->  ( ( j  -  K )  +  K
)  =  j )
1916, 17, 18syl2an 464 . . . . . . . . . . . . 13  |-  ( ( j  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( j  -  K )  +  K
)  =  j )
2013, 15, 19syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( ( j  -  K )  +  K
)  =  j )
2111, 20eqtr2d 2468 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  =  ( k  +  K ) )
22 simprl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
2321, 22eqeltrrd 2510 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
24 fsumrev.2 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
2524adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  M  e.  ZZ )
26 fsumrev.3 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
2726adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  N  e.  ZZ )
2813, 15zsubcld 10372 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( j  -  K
)  e.  ZZ )
2910, 28eqeltrd 2509 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ZZ )
30 fzaddel 11079 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3125, 27, 29, 15, 30syl22anc 1185 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3223, 31mpbird 224 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ( M ... N ) )
3332, 21jca 519 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) )
34 simprr 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  =  ( k  +  K ) )
35 simprl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ( M ... N ) )
3624adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  M  e.  ZZ )
3726adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  N  e.  ZZ )
38 elfzelz 11051 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
3938ad2antrl 709 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ZZ )
4014adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  K  e.  ZZ )
4136, 37, 39, 40, 30syl22anc 1185 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
4235, 41mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4334, 42eqeltrd 2509 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4434oveq1d 6088 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  -  K
)  =  ( ( k  +  K )  -  K ) )
45 zcn 10279 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  k  e.  CC )
46 pncan 9303 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( ( k  +  K )  -  K
)  =  k )
4745, 17, 46syl2an 464 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  +  K )  -  K
)  =  k )
4839, 40, 47syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( ( k  +  K )  -  K
)  =  k )
4944, 48eqtr2d 2468 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  =  ( j  -  K ) )
5043, 49jca 519 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) )
5133, 50impbida 806 . . . . . . 7  |-  ( ph  ->  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) ) )
5251opabbidv 4263 . . . . . 6  |-  ( ph  ->  { <. k ,  j
>.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }  =  { <. k ,  j
>.  |  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) } )
53 df-mpt 4260 . . . . . . . 8  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) }
5453cnveqi 5039 . . . . . . 7  |-  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  =  `' { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }
55 cnvopab 5266 . . . . . . 7  |-  `' { <. j ,  k >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }  =  { <. k ,  j
>.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) }
5654, 55eqtri 2455 . . . . . 6  |-  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  =  { <. k ,  j >.  |  ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) }
57 df-mpt 4260 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  ( k  +  K ) )  =  { <. k ,  j >.  |  ( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) }
5852, 56, 573eqtr4g 2492 . . . . 5  |-  ( ph  ->  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  =  ( k  e.  ( M ... N ) 
|->  ( k  +  K
) ) )
5958fneq1d 5528 . . . 4  |-  ( ph  ->  ( `' ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  Fn  ( M ... N )  <->  ( k  e.  ( M ... N
)  |->  ( k  +  K ) )  Fn  ( M ... N
) ) )
609, 59mpbiri 225 . . 3  |-  ( ph  ->  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  Fn  ( M ... N
) )
61 dff1o4 5674 . . 3  |-  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N )  <->  ( (
j  e.  ( ( M  +  K ) ... ( N  +  K ) )  |->  ( j  -  K ) )  Fn  ( ( M  +  K ) ... ( N  +  K ) )  /\  `' ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )  Fn  ( M ... N
) ) )
626, 60, 61sylanbrc 646 . 2  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
63 oveq1 6080 . . . 4  |-  ( j  =  k  ->  (
j  -  K )  =  ( k  -  K ) )
64 ovex 6098 . . . 4  |-  ( k  -  K )  e. 
_V
6563, 4, 64fvmpt 5798 . . 3  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  (
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) `  k )  =  ( k  -  K ) )
6665adantl 453 . 2  |-  ( (
ph  /\  k  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) `  k )  =  ( k  -  K ) )
67 fsumrev.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
681, 2, 62, 66, 67fsumf1o 12509 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {copab 4257    e. cmpt 4258   `'ccnv 4869    Fn wfn 5441   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   CCcc 8980    + caddc 8985    - cmin 9283   ZZcz 10274   ...cfz 11035   sum_csu 12471
This theorem is referenced by:  fsumshftm  12556  binomlem  12600  dvtaylp  20278  binomfallfaclem2  25348  bpolydiflem  26092
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472
  Copyright terms: Public domain W3C validator