MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Structured version   Unicode version

Theorem fsumsplit 12538
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fsumsplit.2  |-  ( ph  ->  U  =  ( A  u.  B ) )
fsumsplit.3  |-  ( ph  ->  U  e.  Fin )
fsumsplit.4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fsumsplit  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    ph, k    U, k
Allowed substitution hint:    C( k)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 3512 . . . . 5  |-  A  C_  ( A  u.  B
)
2 fsumsplit.2 . . . . 5  |-  ( ph  ->  U  =  ( A  u.  B ) )
31, 2syl5sseqr 3399 . . . 4  |-  ( ph  ->  A  C_  U )
43sselda 3350 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  U )
5 fsumsplit.4 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
64, 5syldan 458 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
76ralrimiva 2791 . . . 4  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
8 fsumsplit.3 . . . . 5  |-  ( ph  ->  U  e.  Fin )
98olcd 384 . . . 4  |-  ( ph  ->  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)
10 sumss2 12525 . . . 4  |-  ( ( ( A  C_  U  /\  A. k  e.  A  C  e.  CC )  /\  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)  ->  sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
113, 7, 9, 10syl21anc 1184 . . 3  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
12 ssun2 3513 . . . . 5  |-  B  C_  ( A  u.  B
)
1312, 2syl5sseqr 3399 . . . 4  |-  ( ph  ->  B  C_  U )
1413sselda 3350 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  U )
1514, 5syldan 458 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
1615ralrimiva 2791 . . . 4  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
17 sumss2 12525 . . . 4  |-  ( ( ( B  C_  U  /\  A. k  e.  B  C  e.  CC )  /\  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)  ->  sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
1813, 16, 9, 17syl21anc 1184 . . 3  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
1911, 18oveq12d 6102 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
20 0cn 9089 . . . 4  |-  0  e.  CC
21 ifcl 3777 . . . 4  |-  ( ( C  e.  CC  /\  0  e.  CC )  ->  if ( k  e.  A ,  C , 
0 )  e.  CC )
225, 20, 21sylancl 645 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
23 ifcl 3777 . . . 4  |-  ( ( C  e.  CC  /\  0  e.  CC )  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
245, 20, 23sylancl 645 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
258, 22, 24fsumadd 12537 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
262eleq2d 2505 . . . . . 6  |-  ( ph  ->  ( k  e.  U  <->  k  e.  ( A  u.  B ) ) )
27 elun 3490 . . . . . 6  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
2826, 27syl6bb 254 . . . . 5  |-  ( ph  ->  ( k  e.  U  <->  ( k  e.  A  \/  k  e.  B )
) )
2928biimpa 472 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
k  e.  A  \/  k  e.  B )
)
30 iftrue 3747 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
3130adantl 454 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
32 noel 3634 . . . . . . . . . . 11  |-  -.  k  e.  (/)
33 elin 3532 . . . . . . . . . . . 12  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
34 fsumsplit.1 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
3534eleq2d 2505 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
3633, 35syl5rbbr 253 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
3732, 36mtbii 295 . . . . . . . . . 10  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
38 imnan 413 . . . . . . . . . 10  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
3937, 38sylibr 205 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4039imp 420 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
41 iffalse 3748 . . . . . . . 8  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4240, 41syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4331, 42oveq12d 6102 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
446addid1d 9271 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
4543, 44eqtrd 2470 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
4639con2d 110 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  B  ->  -.  k  e.  A
) )
4746imp 420 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  -.  k  e.  A )
48 iffalse 3748 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
4947, 48syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
50 iftrue 3747 . . . . . . . 8  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  C )
5150adantl 454 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  =  C )
5249, 51oveq12d 6102 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  C ) )
5315addid2d 9272 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  (
0  +  C )  =  C )
5452, 53eqtrd 2470 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
5545, 54jaodan 762 . . . 4  |-  ( (
ph  /\  ( k  e.  A  \/  k  e.  B ) )  -> 
( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  C )
5629, 55syldan 458 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
5756sumeq2dv 12502 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  sum_ k  e.  U  C )
5819, 25, 573eqtr2rd 2477 1  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   ifcif 3741   ` cfv 5457  (class class class)co 6084   Fincfn 7112   CCcc 8993   0cc0 8995    + caddc 8998   ZZ>=cuz 10493   sum_csu 12484
This theorem is referenced by:  fsumm1  12542  fsum1p  12544  fsum2dlem  12559  fsumless  12580  fsumabs  12585  fsumrlim  12595  fsumo1  12596  o1fsum  12597  cvgcmpce  12602  fsumiun  12605  incexclem  12621  incexc  12622  isumltss  12633  climcndslem1  12634  climcndslem2  12635  mertenslem1  12666  bitsinv1  12959  bitsinvp1  12966  sylow2a  15258  fsumcn  18905  ovolfiniun  19402  volfiniun  19446  uniioombllem3  19482  itgfsum  19721  dvmptfsum  19864  vieta1lem2  20233  mtest  20325  birthdaylem2  20796  fsumharmonic  20855  ftalem5  20864  chtprm  20941  chtdif  20946  perfectlem2  21019  lgsquadlem2  21144  dchrisumlem1  21188  dchrisumlem2  21189  rpvmasum2  21211  dchrisum0lem1b  21214  dchrisum0lem3  21218  pntrsumbnd2  21266  pntrlog2bndlem6  21282  pntpbnd2  21286  pntlemf  21304  sumpr  24223  axlowdimlem16  25901  axlowdimlem17  25902  jm2.22  27080  jm2.23  27081  sumpair  27696  stoweidlem11  27750  stoweidlem26  27765  stoweidlem44  27783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485
  Copyright terms: Public domain W3C validator