MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Unicode version

Theorem fsumsplit 12303
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fsumsplit.2  |-  ( ph  ->  U  =  ( A  u.  B ) )
fsumsplit.3  |-  ( ph  ->  U  e.  Fin )
fsumsplit.4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fsumsplit  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    ph, k    U, k
Allowed substitution hint:    C( k)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 3414 . . . . 5  |-  A  C_  ( A  u.  B
)
2 fsumsplit.2 . . . . 5  |-  ( ph  ->  U  =  ( A  u.  B ) )
31, 2syl5sseqr 3303 . . . 4  |-  ( ph  ->  A  C_  U )
43sselda 3256 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  U )
5 fsumsplit.4 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
64, 5syldan 456 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
76ralrimiva 2702 . . . 4  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
8 fsumsplit.3 . . . . 5  |-  ( ph  ->  U  e.  Fin )
98olcd 382 . . . 4  |-  ( ph  ->  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)
10 sumss2 12290 . . . 4  |-  ( ( ( A  C_  U  /\  A. k  e.  A  C  e.  CC )  /\  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)  ->  sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
113, 7, 9, 10syl21anc 1181 . . 3  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
12 ssun2 3415 . . . . 5  |-  B  C_  ( A  u.  B
)
1312, 2syl5sseqr 3303 . . . 4  |-  ( ph  ->  B  C_  U )
1413sselda 3256 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  U )
1514, 5syldan 456 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
1615ralrimiva 2702 . . . 4  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
17 sumss2 12290 . . . 4  |-  ( ( ( B  C_  U  /\  A. k  e.  B  C  e.  CC )  /\  ( U  C_  ( ZZ>=
`  0 )  \/  U  e.  Fin )
)  ->  sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
1813, 16, 9, 17syl21anc 1181 . . 3  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
1911, 18oveq12d 5960 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
20 0cn 8918 . . . 4  |-  0  e.  CC
21 ifcl 3677 . . . 4  |-  ( ( C  e.  CC  /\  0  e.  CC )  ->  if ( k  e.  A ,  C , 
0 )  e.  CC )
225, 20, 21sylancl 643 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
23 ifcl 3677 . . . 4  |-  ( ( C  e.  CC  /\  0  e.  CC )  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
245, 20, 23sylancl 643 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
258, 22, 24fsumadd 12302 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
262eleq2d 2425 . . . . . 6  |-  ( ph  ->  ( k  e.  U  <->  k  e.  ( A  u.  B ) ) )
27 elun 3392 . . . . . 6  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
2826, 27syl6bb 252 . . . . 5  |-  ( ph  ->  ( k  e.  U  <->  ( k  e.  A  \/  k  e.  B )
) )
2928biimpa 470 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
k  e.  A  \/  k  e.  B )
)
30 iftrue 3647 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
3130adantl 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
32 noel 3535 . . . . . . . . . . 11  |-  -.  k  e.  (/)
33 elin 3434 . . . . . . . . . . . 12  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
34 fsumsplit.1 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
3534eleq2d 2425 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
3633, 35syl5rbbr 251 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
3732, 36mtbii 293 . . . . . . . . . 10  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
38 imnan 411 . . . . . . . . . 10  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
3937, 38sylibr 203 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4039imp 418 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
41 iffalse 3648 . . . . . . . 8  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4240, 41syl 15 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4331, 42oveq12d 5960 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
446addid1d 9099 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
4543, 44eqtrd 2390 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
4639con2d 107 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  B  ->  -.  k  e.  A
) )
4746imp 418 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  -.  k  e.  A )
48 iffalse 3648 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
4947, 48syl 15 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
50 iftrue 3647 . . . . . . . 8  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  C )
5150adantl 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  =  C )
5249, 51oveq12d 5960 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  C ) )
5315addid2d 9100 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  (
0  +  C )  =  C )
5452, 53eqtrd 2390 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
5545, 54jaodan 760 . . . 4  |-  ( (
ph  /\  ( k  e.  A  \/  k  e.  B ) )  -> 
( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  C )
5629, 55syldan 456 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
5756sumeq2dv 12267 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  sum_ k  e.  U  C )
5819, 25, 573eqtr2rd 2397 1  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619    u. cun 3226    i^i cin 3227    C_ wss 3228   (/)c0 3531   ifcif 3641   ` cfv 5334  (class class class)co 5942   Fincfn 6948   CCcc 8822   0cc0 8824    + caddc 8827   ZZ>=cuz 10319   sum_csu 12249
This theorem is referenced by:  fsumm1  12307  fsum1p  12309  fsum2dlem  12324  fsumless  12345  fsumabs  12350  fsumrlim  12360  fsumo1  12361  o1fsum  12362  cvgcmpce  12367  fsumiun  12370  incexclem  12386  incexc  12387  isumltss  12398  climcndslem1  12399  climcndslem2  12400  mertenslem1  12431  bitsinv1  12724  bitsinvp1  12731  sylow2a  15023  fsumcn  18471  ovolfiniun  18958  volfiniun  19002  uniioombllem3  19038  itgfsum  19279  dvmptfsum  19420  vieta1lem2  19789  mtest  19881  birthdaylem2  20352  fsumharmonic  20411  ftalem5  20420  chtprm  20497  chtdif  20502  perfectlem2  20575  lgsquadlem2  20700  dchrisumlem1  20744  dchrisumlem2  20745  rpvmasum2  20767  dchrisum0lem1b  20770  dchrisum0lem3  20774  pntrsumbnd2  20822  pntrlog2bndlem6  20838  pntpbnd2  20842  pntlemf  20860  sumpr  23410  axlowdimlem16  25144  axlowdimlem17  25145  jm2.22  26411  jm2.23  26412  sumpair  27029  stoweidlem11  27083  stoweidlem26  27098  stoweidlem44  27116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-sup 7281  df-oi 7312  df-card 7659  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-n0 10055  df-z 10114  df-uz 10320  df-rp 10444  df-fz 10872  df-fzo 10960  df-seq 11136  df-exp 11195  df-hash 11428  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-clim 12052  df-sum 12250
  Copyright terms: Public domain W3C validator