MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumtscop Unicode version

Theorem fsumtscop 12359
Description: Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
fsumtscop.1  |-  ( k  =  j  ->  A  =  B )
fsumtscop.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
fsumtscop.3  |-  ( k  =  M  ->  A  =  D )
fsumtscop.4  |-  ( k  =  ( N  + 
1 )  ->  A  =  E )
fsumtscop.5  |-  ( ph  ->  N  e.  ZZ )
fsumtscop.6  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
fsumtscop.7  |-  ( (
ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  ->  A  e.  CC )
Assertion
Ref Expression
fsumtscop  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) ( B  -  C
)  =  ( D  -  E ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem fsumtscop
StepHypRef Expression
1 fsumtscop.5 . . . 4  |-  ( ph  ->  N  e.  ZZ )
2 fzval3 11003 . . . 4  |-  ( N  e.  ZZ  ->  ( M ... N )  =  ( M..^ ( N  +  1 ) ) )
31, 2syl 15 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( M..^ ( N  +  1 ) ) )
43sumeq1d 12271 . 2  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) ( B  -  C
)  =  sum_ j  e.  ( M..^ ( N  +  1 ) ) ( B  -  C
) )
5 fsumtscop.1 . . 3  |-  ( k  =  j  ->  A  =  B )
6 fsumtscop.2 . . 3  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
7 fsumtscop.3 . . 3  |-  ( k  =  M  ->  A  =  D )
8 fsumtscop.4 . . 3  |-  ( k  =  ( N  + 
1 )  ->  A  =  E )
9 fsumtscop.6 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
10 fsumtscop.7 . . 3  |-  ( (
ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  ->  A  e.  CC )
115, 6, 7, 8, 9, 10fsumtscopo 12357 . 2  |-  ( ph  -> 
sum_ j  e.  ( M..^ ( N  + 
1 ) ) ( B  -  C )  =  ( D  -  E ) )
124, 11eqtrd 2390 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) ( B  -  C
)  =  ( D  -  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   ` cfv 5337  (class class class)co 5945   CCcc 8825   1c1 8828    + caddc 8830    - cmin 9127   ZZcz 10116   ZZ>=cuz 10322   ...cfz 10874  ..^cfzo 10962   sum_csu 12255
This theorem is referenced by:  trireciplem  12417  rplogsumlem1  20745  lgamcvg2  24088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-rp 10447  df-fz 10875  df-fzo 10963  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256
  Copyright terms: Public domain W3C validator