MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumtscopo Structured version   Unicode version

Theorem fsumtscopo 12583
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
fsumtscopo.1  |-  ( k  =  j  ->  A  =  B )
fsumtscopo.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
fsumtscopo.3  |-  ( k  =  M  ->  A  =  D )
fsumtscopo.4  |-  ( k  =  N  ->  A  =  E )
fsumtscopo.5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumtscopo.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
fsumtscopo  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem fsumtscopo
StepHypRef Expression
1 fsumtscopo.5 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz1 11066 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
4 fsumtscopo.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
54ralrimiva 2791 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
6 fsumtscopo.3 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  D )
76eleq1d 2504 . . . . . . . 8  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
87rspcv 3050 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  D  e.  CC ) )
93, 5, 8sylc 59 . . . . . 6  |-  ( ph  ->  D  e.  CC )
109adantr 453 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  D  e.  CC )
1110subidd 9401 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  D )  =  0 )
12 sum0 12517 . . . 4  |-  sum_ j  e.  (/)  ( B  -  C )  =  0
1311, 12syl6reqr 2489 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  (/)  ( B  -  C )  =  ( D  -  D ) )
14 oveq2 6091 . . . . . 6  |-  ( N  =  M  ->  ( M..^ N )  =  ( M..^ M ) )
1514adantl 454 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
16 fzo0 11161 . . . . 5  |-  ( M..^ M )  =  (/)
1715, 16syl6eq 2486 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
1817sumeq1d 12497 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  sum_ j  e.  (/)  ( B  -  C ) )
19 eqeq1 2444 . . . . . . . 8  |-  ( k  =  N  ->  (
k  =  M  <->  N  =  M ) )
20 fsumtscopo.4 . . . . . . . . 9  |-  ( k  =  N  ->  A  =  E )
2120eqeq1d 2446 . . . . . . . 8  |-  ( k  =  N  ->  ( A  =  D  <->  E  =  D ) )
2219, 21imbi12d 313 . . . . . . 7  |-  ( k  =  N  ->  (
( k  =  M  ->  A  =  D )  <->  ( N  =  M  ->  E  =  D ) ) )
2322, 6vtoclg 3013 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  ->  E  =  D ) )
2423imp 420 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  E  =  D )
251, 24sylan 459 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  E  =  D )
2625oveq2d 6099 . . 3  |-  ( (
ph  /\  N  =  M )  ->  ( D  -  E )  =  ( D  -  D ) )
2713, 18, 263eqtr4d 2480 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
28 fzofi 11315 . . . . . 6  |-  ( M..^ N )  e.  Fin
2928a1i 11 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
30 elfzofz 11156 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
3130adantl 454 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ( M ... N ) )
325adantr 453 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) A  e.  CC )
33 fsumtscopo.1 . . . . . . . 8  |-  ( k  =  j  ->  A  =  B )
3433eleq1d 2504 . . . . . . 7  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
3534rspcv 3050 . . . . . 6  |-  ( j  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  B  e.  CC ) )
3631, 32, 35sylc 59 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
37 fzofzp1 11191 . . . . . . 7  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
3837adantl 454 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... N ) )
39 fsumtscopo.2 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
4039eleq1d 2504 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
4140rspcv 3050 . . . . . 6  |-  ( ( j  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  C  e.  CC ) )
4238, 32, 41sylc 59 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
4329, 36, 42fsumsub 12573 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4443adantr 453 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C ) )
4533cbvsumv 12492 . . . . . 6  |-  sum_ k  e.  ( M..^ N ) A  =  sum_ j  e.  ( M..^ N ) B
46 eluzel2 10495 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
471, 46syl 16 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
48 eluzp1m1 10511 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
4947, 48sylan 459 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
50 eluzelz 10498 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
511, 50syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
5251adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
53 fzoval 11143 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
5452, 53syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
55 fzossfz 11159 . . . . . . . . . . 11  |-  ( M..^ N )  C_  ( M ... N )
5654, 55syl6eqssr 3401 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
5756sselda 3350 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M ... N
) )
584adantlr 697 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  A  e.  CC )
5957, 58syldan 458 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
6049, 59, 6fsum1p 12541 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  ( D  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A ) )
6154sumeq1d 12497 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  sum_ k  e.  ( M ... ( N  -  1 ) ) A )
62 fzoval 11143 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
6352, 62syl 16 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
6463sumeq1d 12497 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) A  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) A )
6564oveq2d 6099 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  =  ( D  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A ) )
6660, 61, 653eqtr4d 2480 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) A  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
6745, 66syl5eqr 2484 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) B  =  ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
68 simpr 449 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
69 fzp1ss 11100 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
7047, 69syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
7170sselda 3350 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
7271, 4syldan 458 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7372adantlr 697 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
7468, 73, 20fsumm1 12539 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
75 1z 10313 . . . . . . . . . 10  |-  1  e.  ZZ
7675a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
7747peano2zd 10380 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
7876, 77, 51, 72, 39fsumshftm 12566 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) C )
7947zcnd 10378 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  CC )
80 ax-1cn 9050 . . . . . . . . . . . 12  |-  1  e.  CC
81 pncan 9313 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
8279, 80, 81sylancl 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
8382oveq1d 6098 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M ... ( N  - 
1 ) ) )
8451, 53syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( M..^ N )  =  ( M ... ( N  -  1
) ) )
8583, 84eqtr4d 2473 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) )  =  ( M..^ N ) )
8685sumeq1d 12497 . . . . . . . 8  |-  ( ph  -> 
sum_ j  e.  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) C  =  sum_ j  e.  ( M..^ N ) C )
8778, 86eqtrd 2470 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) A  =  sum_ j  e.  ( M..^ N ) C )
8887adantr 453 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) A  =  sum_ j  e.  ( M..^ N ) C )
8951, 62syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
9089sumeq1d 12497 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  =  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A )
9190oveq1d 6098 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E ) )
92 fzofi 11315 . . . . . . . . . . 11  |-  ( ( M  +  1 )..^ N )  e.  Fin
9392a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
94 elfzofz 11156 . . . . . . . . . . 11  |-  ( k  e.  ( ( M  +  1 )..^ N
)  ->  k  e.  ( ( M  + 
1 ) ... N
) )
9594, 72sylan2 462 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  A  e.  CC )
9693, 95fsumcl 12529 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ N ) A  e.  CC )
97 eluzfz2 11067 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
981, 97syl 16 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( M ... N ) )
9920eleq1d 2504 . . . . . . . . . . 11  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
10099rspcv 3050 . . . . . . . . . 10  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  E  e.  CC ) )
10198, 5, 100sylc 59 . . . . . . . . 9  |-  ( ph  ->  E  e.  CC )
10296, 101addcomd 9270 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10391, 102eqtr3d 2472 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
104103adantr 453 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 ) ... ( N  - 
1 ) ) A  +  E )  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10574, 88, 1043eqtr3d 2478 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) C  =  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )
10667, 105oveq12d 6101 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C )  =  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) ) )
1079, 101, 96pnpcan2d 9451 . . . . 5  |-  ( ph  ->  ( ( D  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  +  1 )..^ N ) A ) )  =  ( D  -  E ) )
108107adantr 453 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A )  -  ( E  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) A ) )  =  ( D  -  E
) )
109106, 108eqtrd 2470 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) B  -  sum_ j  e.  ( M..^ N ) C )  =  ( D  -  E ) )
11044, 109eqtrd 2470 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  -  C
)  =  ( D  -  E ) )
111 uzp1 10521 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1121, 111syl 16 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
11327, 110, 112mpjaodan 763 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707    C_ wss 3322   (/)c0 3630   ` cfv 5456  (class class class)co 6083   Fincfn 7111   CCcc 8990   0cc0 8992   1c1 8993    + caddc 8995    - cmin 9293   ZZcz 10284   ZZ>=cuz 10490   ...cfz 11045  ..^cfzo 11137   sum_csu 12481
This theorem is referenced by:  fsumtscopo2  12584  fsumtscop  12585  geoserg  12647  dchrisumlem2  21186  stirlinglem12  27812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-fz 11046  df-fzo 11138  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-sum 12482
  Copyright terms: Public domain W3C validator