MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem2 Unicode version

Theorem fta1glem2 19552
Description: Lemma for fta1g 19553. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p  |-  P  =  (Poly1 `  R )
fta1g.b  |-  B  =  ( Base `  P
)
fta1g.d  |-  D  =  ( deg1  `  R )
fta1g.o  |-  O  =  (eval1 `  R )
fta1g.w  |-  W  =  ( 0g `  R
)
fta1g.z  |-  .0.  =  ( 0g `  P )
fta1g.1  |-  ( ph  ->  R  e. IDomn )
fta1g.2  |-  ( ph  ->  F  e.  B )
fta1glem.k  |-  K  =  ( Base `  R
)
fta1glem.x  |-  X  =  (var1 `  R )
fta1glem.m  |-  .-  =  ( -g `  P )
fta1glem.a  |-  A  =  (algSc `  P )
fta1glem.g  |-  G  =  ( X  .-  ( A `  T )
)
fta1glem.3  |-  ( ph  ->  N  e.  NN0 )
fta1glem.4  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
fta1glem.5  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
fta1glem.6  |-  ( ph  ->  A. g  e.  B  ( ( D `  g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
Assertion
Ref Expression
fta1glem2  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )
Distinct variable groups:    B, g    D, g    g, F    g, N    g, O    g, G    P, g    R, g    g, W
Allowed substitution hints:    ph( g)    A( g)    T( g)    K( g)    .- ( g)    X( g)    .0. ( g)

Proof of Theorem fta1glem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fta1glem.5 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
2 eqid 2283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  ^s  K )  =  ( R  ^s  K )
3 fta1glem.k . . . . . . . . . . . . . . . . . . . . 21  |-  K  =  ( Base `  R
)
4 eqid 2283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
5 fta1g.1 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  R  e. IDomn )
6 fvex 5539 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  R )  e.  _V
73, 6eqeltri 2353 . . . . . . . . . . . . . . . . . . . . . 22  |-  K  e. 
_V
87a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  _V )
9 isidom 16045 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
109simplbi 446 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( R  e. IDomn  ->  R  e.  CRing )
115, 10syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  R  e.  CRing )
12 fta1g.o . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  O  =  (eval1 `  R )
13 fta1g.p . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  P  =  (Poly1 `  R )
1412, 13, 2, 3evl1rhm 19412 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
1511, 14syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
16 fta1g.b . . . . . . . . . . . . . . . . . . . . . . . 24  |-  B  =  ( Base `  P
)
1716, 4rhmf 15504 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
1815, 17syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
19 fta1g.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  F  e.  B )
20 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( O : B --> ( Base `  ( R  ^s  K ) )  /\  F  e.  B )  ->  ( O `  F )  e.  ( Base `  ( R  ^s  K ) ) )
2118, 19, 20syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( O `  F
)  e.  ( Base `  ( R  ^s  K ) ) )
222, 3, 4, 5, 8, 21pwselbas 13388 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( O `  F
) : K --> K )
23 ffn 5389 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O `  F ) : K --> K  -> 
( O `  F
)  Fn  K )
2422, 23syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( O `  F
)  Fn  K )
25 fniniseg 5646 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  F )  Fn  K  ->  ( T  e.  ( `' ( O `  F )
" { W }
)  <->  ( T  e.  K  /\  ( ( O `  F ) `
 T )  =  W ) ) )
2624, 25syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( T  e.  ( `' ( O `  F ) " { W } )  <->  ( T  e.  K  /\  (
( O `  F
) `  T )  =  W ) ) )
271, 26mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( T  e.  K  /\  ( ( O `  F ) `  T
)  =  W ) )
2827simprd 449 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( O `  F ) `  T
)  =  W )
29 fta1glem.x . . . . . . . . . . . . . . . . 17  |-  X  =  (var1 `  R )
30 fta1glem.m . . . . . . . . . . . . . . . . 17  |-  .-  =  ( -g `  P )
31 fta1glem.a . . . . . . . . . . . . . . . . 17  |-  A  =  (algSc `  P )
32 fta1glem.g . . . . . . . . . . . . . . . . 17  |-  G  =  ( X  .-  ( A `  T )
)
339simprbi 450 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. IDomn  ->  R  e. Domn )
34 domnnzr 16036 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. Domn  ->  R  e. NzRing )
3533, 34syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( R  e. IDomn  ->  R  e. NzRing )
365, 35syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  R  e. NzRing )
3727simpld 445 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  e.  K )
38 fta1g.w . . . . . . . . . . . . . . . . 17  |-  W  =  ( 0g `  R
)
39 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( ||r `  P
)  =  ( ||r `  P
)
4013, 16, 3, 29, 30, 31, 32, 12, 36, 11, 37, 19, 38, 39facth1 19550 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  ( ( O `  F ) `  T )  =  W ) )
4128, 40mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G ( ||r `
 P ) F )
42 nzrrng 16013 . . . . . . . . . . . . . . . . 17  |-  ( R  e. NzRing  ->  R  e.  Ring )
4336, 42syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  e.  Ring )
44 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
45 fta1g.d . . . . . . . . . . . . . . . . . . 19  |-  D  =  ( deg1  `  R )
4613, 16, 3, 29, 30, 31, 32, 12, 36, 11, 37, 44, 45, 38ply1remlem 19548 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  ( D `  G )  =  1  /\  ( `' ( O `  G ) " { W } )  =  { T } ) )
4746simp1d 967 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
48 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
4948, 44mon1puc1p 19536 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
5043, 47, 49syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
51 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  P )  =  ( .r `  P
)
52 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  (quot1p `  R
)  =  (quot1p `  R
)
5313, 39, 16, 48, 51, 52dvdsq1p 19546 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( G (
||r `  P ) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
5443, 19, 50, 53syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
5541, 54mpbid 201 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )
5655fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  F
)  =  ( O `
 ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) )
5752, 13, 16, 48q1pcl 19541 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( F (quot1p `  R ) G )  e.  B )
5843, 19, 50, 57syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F (quot1p `  R
) G )  e.  B )
5913, 16, 44mon1pcl 19530 . . . . . . . . . . . . . . 15  |-  ( G  e.  (Monic1p `  R )  ->  G  e.  B )
6047, 59syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  B )
61 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( .r
`  ( R  ^s  K
) )  =  ( .r `  ( R  ^s  K ) )
6216, 51, 61rhmmul 15505 . . . . . . . . . . . . . 14  |-  ( ( O  e.  ( P RingHom 
( R  ^s  K ) )  /\  ( F (quot1p `  R ) G )  e.  B  /\  G  e.  B )  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
6315, 58, 60, 62syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
64 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( O : B --> ( Base `  ( R  ^s  K ) )  /\  ( F (quot1p `  R ) G )  e.  B )  ->  ( O `  ( F (quot1p `  R ) G ) )  e.  (
Base `  ( R  ^s  K ) ) )
6518, 58, 64syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  e.  (
Base `  ( R  ^s  K ) ) )
66 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( O : B --> ( Base `  ( R  ^s  K ) )  /\  G  e.  B )  ->  ( O `  G )  e.  ( Base `  ( R  ^s  K ) ) )
6718, 60, 66syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( O `  G
)  e.  ( Base `  ( R  ^s  K ) ) )
68 eqid 2283 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
692, 4, 5, 8, 65, 67, 68, 61pwsmulrval 13390 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) )  =  ( ( O `
 ( F (quot1p `  R ) G ) )  o F ( .r `  R ) ( O `  G
) ) )
7056, 63, 693eqtrd 2319 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  F
)  =  ( ( O `  ( F (quot1p `  R ) G ) )  o F ( .r `  R
) ( O `  G ) ) )
7170fveq1d 5527 . . . . . . . . . . 11  |-  ( ph  ->  ( ( O `  F ) `  x
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) )  o F ( .r `  R
) ( O `  G ) ) `  x ) )
7271adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  F
) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) )  o F ( .r `  R
) ( O `  G ) ) `  x ) )
732, 3, 4, 5, 8, 65pwselbas 13388 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) ) : K --> K )
74 ffn 5389 . . . . . . . . . . . . 13  |-  ( ( O `  ( F (quot1p `  R ) G ) ) : K --> K  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
7573, 74syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
7675adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  ( O `  ( F
(quot1p `
 R ) G ) )  Fn  K
)
772, 3, 4, 5, 8, 67pwselbas 13388 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  G
) : K --> K )
78 ffn 5389 . . . . . . . . . . . . 13  |-  ( ( O `  G ) : K --> K  -> 
( O `  G
)  Fn  K )
7977, 78syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  G
)  Fn  K )
8079adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  ( O `  G )  Fn  K )
817a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  K  e.  _V )
82 simpr 447 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  x  e.  K )
83 fnfvof 6090 . . . . . . . . . . 11  |-  ( ( ( ( O `  ( F (quot1p `  R ) G ) )  Fn  K  /\  ( O `  G
)  Fn  K )  /\  ( K  e. 
_V  /\  x  e.  K ) )  -> 
( ( ( O `
 ( F (quot1p `  R ) G ) )  o F ( .r `  R ) ( O `  G
) ) `  x
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8476, 80, 81, 82, 83syl22anc 1183 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  ( F (quot1p `  R ) G ) )  o F ( .r `  R
) ( O `  G ) ) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8572, 84eqtrd 2315 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  F
) `  x )  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) ) )
8685eqeq1d 2291 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  F ) `  x
)  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) )  =  W ) )
875, 33syl 15 . . . . . . . . . 10  |-  ( ph  ->  R  e. Domn )
8887adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  R  e. Domn )
89 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( ( O `  ( F (quot1p `  R ) G ) ) : K --> K  /\  x  e.  K
)  ->  ( ( O `  ( F
(quot1p `
 R ) G ) ) `  x
)  e.  K )
9073, 89sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  e.  K )
91 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( ( O `  G
) : K --> K  /\  x  e.  K )  ->  ( ( O `  G ) `  x
)  e.  K )
9277, 91sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  G
) `  x )  e.  K )
933, 68, 38domneq0 16038 . . . . . . . . 9  |-  ( ( R  e. Domn  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  e.  K  /\  ( ( O `  G ) `  x
)  e.  K )  ->  ( ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
) ( .r `  R ) ( ( O `  G ) `
 x ) )  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
9488, 90, 92, 93syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( ( O `
 ( F (quot1p `  R ) G ) ) `  x ) ( .r `  R
) ( ( O `
 G ) `  x ) )  =  W  <->  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
9586, 94bitrd 244 . . . . . . 7  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  F ) `  x
)  =  W  <->  ( (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) )
9695pm5.32da 622 . . . . . 6  |-  ( ph  ->  ( ( x  e.  K  /\  ( ( O `  F ) `
 x )  =  W )  <->  ( x  e.  K  /\  (
( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W  \/  ( ( O `  G ) `  x
)  =  W ) ) ) )
97 andi 837 . . . . . 6  |-  ( ( x  e.  K  /\  ( ( ( O `
 ( F (quot1p `  R ) G ) ) `  x )  =  W  \/  (
( O `  G
) `  x )  =  W ) )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) )
9896, 97syl6bb 252 . . . . 5  |-  ( ph  ->  ( ( x  e.  K  /\  ( ( O `  F ) `
 x )  =  W )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
99 fniniseg 5646 . . . . . 6  |-  ( ( O `  F )  Fn  K  ->  (
x  e.  ( `' ( O `  F
) " { W } )  <->  ( x  e.  K  /\  (
( O `  F
) `  x )  =  W ) ) )
10024, 99syl 15 . . . . 5  |-  ( ph  ->  ( x  e.  ( `' ( O `  F ) " { W } )  <->  ( x  e.  K  /\  (
( O `  F
) `  x )  =  W ) ) )
101 elun 3316 . . . . . 6  |-  ( x  e.  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  <->  ( x  e.  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  \/  x  e.  { T } ) )
102 fniniseg 5646 . . . . . . . 8  |-  ( ( O `  ( F (quot1p `  R ) G ) )  Fn  K  ->  ( x  e.  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  <->  ( x  e.  K  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W ) ) )
10375, 102syl 15 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  <->  ( x  e.  K  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W ) ) )
10446simp3d 969 . . . . . . . . 9  |-  ( ph  ->  ( `' ( O `
 G ) " { W } )  =  { T } )
105104eleq2d 2350 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " { W } )  <->  x  e.  { T } ) )
106 fniniseg 5646 . . . . . . . . 9  |-  ( ( O `  G )  Fn  K  ->  (
x  e.  ( `' ( O `  G
) " { W } )  <->  ( x  e.  K  /\  (
( O `  G
) `  x )  =  W ) ) )
10779, 106syl 15 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " { W } )  <->  ( x  e.  K  /\  (
( O `  G
) `  x )  =  W ) ) )
108105, 107bitr3d 246 . . . . . . 7  |-  ( ph  ->  ( x  e.  { T }  <->  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) )
109103, 108orbi12d 690 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  \/  x  e.  { T } )  <-> 
( ( x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
110101, 109syl5bb 248 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  <->  ( (
x  e.  K  /\  ( ( O `  ( F (quot1p `  R ) G ) ) `  x
)  =  W )  \/  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  W ) ) ) )
11198, 100, 1103bitr4d 276 . . . 4  |-  ( ph  ->  ( x  e.  ( `' ( O `  F ) " { W } )  <->  x  e.  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) ) )
112111eqrdv 2281 . . 3  |-  ( ph  ->  ( `' ( O `
 F ) " { W } )  =  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )
113112fveq2d 5529 . 2  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  =  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) ) )
114 fvex 5539 . . . . . . . . 9  |-  ( O `
 ( F (quot1p `  R ) G ) )  e.  _V
115114cnvex 5209 . . . . . . . 8  |-  `' ( O `  ( F (quot1p `  R ) G ) )  e.  _V
116 imaexg 5026 . . . . . . . 8  |-  ( `' ( O `  ( F (quot1p `  R ) G ) )  e.  _V  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V )
117115, 116mp1i 11 . . . . . . 7  |-  ( ph  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V )
118 fta1glem.3 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
119 fta1glem.6 . . . . . . . . 9  |-  ( ph  ->  A. g  e.  B  ( ( D `  g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) ) )
120 fta1g.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  P )
121 fta1glem.4 . . . . . . . . . 10  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
12213, 16, 45, 12, 38, 120, 5, 19, 3, 29, 30, 31, 32, 118, 121, 1fta1glem1 19551 . . . . . . . . 9  |-  ( ph  ->  ( D `  ( F (quot1p `  R ) G ) )  =  N )
123 fveq2 5525 . . . . . . . . . . . 12  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( D `  g )  =  ( D `  ( F (quot1p `  R ) G ) ) )
124123eqeq1d 2291 . . . . . . . . . . 11  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( D `
 g )  =  N  <->  ( D `  ( F (quot1p `  R ) G ) )  =  N ) )
125 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( O `  g )  =  ( O `  ( F (quot1p `  R ) G ) ) )
126125cnveqd 4857 . . . . . . . . . . . . . 14  |-  ( g  =  ( F (quot1p `  R ) G )  ->  `' ( O `
 g )  =  `' ( O `  ( F (quot1p `  R ) G ) ) )
127126imaeq1d 5011 . . . . . . . . . . . . 13  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( `' ( O `  g )
" { W }
)  =  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )
128127fveq2d 5529 . . . . . . . . . . . 12  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( # `  ( `' ( O `  g ) " { W } ) )  =  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) ) )
129128, 123breq12d 4036 . . . . . . . . . . 11  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( # `  ( `' ( O `
 g ) " { W } ) )  <_  ( D `  g )  <->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) )
130124, 129imbi12d 311 . . . . . . . . . 10  |-  ( g  =  ( F (quot1p `  R ) G )  ->  ( ( ( D `  g )  =  N  ->  ( # `
 ( `' ( O `  g )
" { W }
) )  <_  ( D `  g )
)  <->  ( ( D `
 ( F (quot1p `  R ) G ) )  =  N  -> 
( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) ) )
131130rspcv 2880 . . . . . . . . 9  |-  ( ( F (quot1p `  R ) G )  e.  B  -> 
( A. g  e.  B  ( ( D `
 g )  =  N  ->  ( # `  ( `' ( O `  g ) " { W } ) )  <_ 
( D `  g
) )  ->  (
( D `  ( F (quot1p `  R ) G ) )  =  N  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) ) ) )
13258, 119, 122, 131syl3c 57 . . . . . . . 8  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_ 
( D `  ( F (quot1p `  R ) G ) ) )
133132, 122breqtrd 4047 . . . . . . 7  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_  N )
134 hashbnd 11343 . . . . . . 7  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  _V  /\  N  e.  NN0  /\  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  <_  N )  ->  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin )
135117, 118, 133, 134syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin )
136 snfi 6941 . . . . . 6  |-  { T }  e.  Fin
137 unfi 7124 . . . . . 6  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  /\ 
{ T }  e.  Fin )  ->  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin )
138135, 136, 137sylancl 643 . . . . 5  |-  ( ph  ->  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin )
139 hashcl 11350 . . . . 5  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } )  e.  Fin  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e. 
NN0 )
140138, 139syl 15 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e. 
NN0 )
141140nn0red 10019 . . 3  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  e.  RR )
142 hashcl 11350 . . . . . 6  |-  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e. 
NN0 )
143135, 142syl 15 . . . . 5  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e. 
NN0 )
144143nn0red 10019 . . . 4  |-  ( ph  ->  ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e.  RR )
145 peano2re 8985 . . . 4  |-  ( (
# `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  e.  RR  ->  ( ( # `
 ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  e.  RR )
146144, 145syl 15 . . 3  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  e.  RR )
147 peano2nn0 10004 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
148118, 147syl 15 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
149121, 148eqeltrd 2357 . . . 4  |-  ( ph  ->  ( D `  F
)  e.  NN0 )
150149nn0red 10019 . . 3  |-  ( ph  ->  ( D `  F
)  e.  RR )
151 hashun2 11365 . . . . 5  |-  ( ( ( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  e.  Fin  /\ 
{ T }  e.  Fin )  ->  ( # `  ( ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) ) )
152135, 136, 151sylancl 643 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) ) )
153 hashsng 11356 . . . . . 6  |-  ( T  e.  ( `' ( O `  F )
" { W }
)  ->  ( # `  { T } )  =  1 )
1541, 153syl 15 . . . . 5  |-  ( ph  ->  ( # `  { T } )  =  1 )
155154oveq2d 5874 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  ( # `  { T } ) )  =  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 ) )
156152, 155breqtrd 4047 . . 3  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 ) )
157118nn0red 10019 . . . . 5  |-  ( ph  ->  N  e.  RR )
158 1re 8837 . . . . . 6  |-  1  e.  RR
159158a1i 10 . . . . 5  |-  ( ph  ->  1  e.  RR )
160144, 157, 159, 133leadd1dd 9386 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  <_  ( N  +  1 ) )
161160, 121breqtrrd 4049 . . 3  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( F (quot1p `  R ) G ) ) " { W } ) )  +  1 )  <_  ( D `  F )
)
162141, 146, 150, 156, 161letrd 8973 . 2  |-  ( ph  ->  ( # `  (
( `' ( O `
 ( F (quot1p `  R ) G ) ) " { W } )  u.  { T } ) )  <_ 
( D `  F
) )
163113, 162eqbrtrd 4043 1  |-  ( ph  ->  ( # `  ( `' ( O `  F ) " { W } ) )  <_ 
( D `  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    u. cun 3150   {csn 3640   class class class wbr 4023   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   Fincfn 6863   RRcr 8736   1c1 8738    + caddc 8740    <_ cle 8868   NN0cn0 9965   #chash 11337   Basecbs 13148   .rcmulr 13209    ^s cpws 13347   0gc0g 13400   -gcsg 14365   Ringcrg 15337   CRingccrg 15338   ||rcdsr 15420   RingHom crh 15494  NzRingcnzr 16009  Domncdomn 16021  IDomncidom 16022  algSccascl 16052  var1cv1 16251  Poly1cpl1 16252  eval1ce1 16254   deg1 cdg1 19440  Monic1pcmn1 19511  Unic1pcuc1p 19512  quot1pcq1p 19513
This theorem is referenced by:  fta1g  19553
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-pws 13350  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-nzr 16010  df-rlreg 16024  df-domn 16025  df-idom 16026  df-assa 16053  df-asp 16054  df-ascl 16055  df-psr 16098  df-mvr 16099  df-mpl 16100  df-evls 16101  df-evl 16102  df-opsr 16106  df-psr1 16257  df-vr1 16258  df-ply1 16259  df-evl1 16261  df-coe1 16262  df-cnfld 16378  df-mdeg 19441  df-deg1 19442  df-mon1 19516  df-uc1p 19517  df-q1p 19518  df-r1p 19519
  Copyright terms: Public domain W3C validator