MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem3 Structured version   Unicode version

Theorem ftalem3 20859
Description: Lemma for fta 20864. There exists a global minimum of the function  abs  o.  F. The proof uses a circle of radius  r where  r is the value coming from ftalem1 20857; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem3.5  |-  D  =  { y  e.  CC  |  ( abs `  y
)  <_  R }
ftalem3.6  |-  J  =  ( TopOpen ` fld )
ftalem3.7  |-  ( ph  ->  R  e.  RR+ )
ftalem3.8  |-  ( ph  ->  A. x  e.  CC  ( R  <  ( abs `  x )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
Assertion
Ref Expression
ftalem3  |-  ( ph  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) )
Distinct variable groups:    x, A    x, z, D    x, N    x, y, F, z    x, J, z    ph, x, y, z    x, R, y
Allowed substitution hints:    A( y, z)    D( y)    R( z)    S( x, y, z)    J( y)    N( y, z)

Proof of Theorem ftalem3
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ftalem3.5 . . . 4  |-  D  =  { y  e.  CC  |  ( abs `  y
)  <_  R }
2 ssrab2 3430 . . . 4  |-  { y  e.  CC  |  ( abs `  y )  <_  R }  C_  CC
31, 2eqsstri 3380 . . 3  |-  D  C_  CC
4 ftalem3.6 . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
54cnfldtopon 18819 . . . . . . 7  |-  J  e.  (TopOn `  CC )
6 resttopon 17227 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  ( Jt  D )  e.  (TopOn `  D ) )
75, 3, 6mp2an 655 . . . . . 6  |-  ( Jt  D )  e.  (TopOn `  D )
87toponunii 16999 . . . . 5  |-  D  = 
U. ( Jt  D )
9 eqid 2438 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
10 cnxmet 18809 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
1110a1i 11 . . . . . . 7  |-  ( ph  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
12 0cn 9086 . . . . . . . 8  |-  0  e.  CC
1312a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
14 ftalem3.7 . . . . . . . 8  |-  ( ph  ->  R  e.  RR+ )
1514rpxrd 10651 . . . . . . 7  |-  ( ph  ->  R  e.  RR* )
164cnfldtopn 18818 . . . . . . . 8  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
17 eqid 2438 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1817cnmetdval 18807 . . . . . . . . . . . . 13  |-  ( ( 0  e.  CC  /\  y  e.  CC )  ->  ( 0 ( abs 
o.  -  ) y
)  =  ( abs `  ( 0  -  y
) ) )
1912, 18mpan 653 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
0 ( abs  o.  -  ) y )  =  ( abs `  (
0  -  y ) ) )
20 df-neg 9296 . . . . . . . . . . . . . 14  |-  -u y  =  ( 0  -  y )
2120fveq2i 5733 . . . . . . . . . . . . 13  |-  ( abs `  -u y )  =  ( abs `  (
0  -  y ) )
22 absneg 12084 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  ( abs `  -u y )  =  ( abs `  y
) )
2321, 22syl5eqr 2484 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  ( abs `  ( 0  -  y ) )  =  ( abs `  y
) )
2419, 23eqtrd 2470 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
0 ( abs  o.  -  ) y )  =  ( abs `  y
) )
2524breq1d 4224 . . . . . . . . . 10  |-  ( y  e.  CC  ->  (
( 0 ( abs 
o.  -  ) y
)  <_  R  <->  ( abs `  y )  <_  R
) )
2625rabbiia 2948 . . . . . . . . 9  |-  { y  e.  CC  |  ( 0 ( abs  o.  -  ) y )  <_  R }  =  { y  e.  CC  |  ( abs `  y
)  <_  R }
271, 26eqtr4i 2461 . . . . . . . 8  |-  D  =  { y  e.  CC  |  ( 0 ( abs  o.  -  )
y )  <_  R }
2816, 27blcld 18537 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  D  e.  ( Clsd `  J
) )
2911, 13, 15, 28syl3anc 1185 . . . . . 6  |-  ( ph  ->  D  e.  ( Clsd `  J ) )
3014rpred 10650 . . . . . . 7  |-  ( ph  ->  R  e.  RR )
31 fveq2 5730 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( abs `  y )  =  ( abs `  x
) )
3231breq1d 4224 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( abs `  y
)  <_  R  <->  ( abs `  x )  <_  R
) )
3332, 1elrab2 3096 . . . . . . . . 9  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( abs `  x )  <_  R
) )
3433simprbi 452 . . . . . . . 8  |-  ( x  e.  D  ->  ( abs `  x )  <_  R )
3534rgen 2773 . . . . . . 7  |-  A. x  e.  D  ( abs `  x )  <_  R
36 breq2 4218 . . . . . . . . 9  |-  ( s  =  R  ->  (
( abs `  x
)  <_  s  <->  ( abs `  x )  <_  R
) )
3736ralbidv 2727 . . . . . . . 8  |-  ( s  =  R  ->  ( A. x  e.  D  ( abs `  x )  <_  s  <->  A. x  e.  D  ( abs `  x )  <_  R
) )
3837rspcev 3054 . . . . . . 7  |-  ( ( R  e.  RR  /\  A. x  e.  D  ( abs `  x )  <_  R )  ->  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s )
3930, 35, 38sylancl 645 . . . . . 6  |-  ( ph  ->  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s )
40 eqid 2438 . . . . . . . 8  |-  ( Jt  D )  =  ( Jt  D )
414, 40cnheibor 18982 . . . . . . 7  |-  ( D 
C_  CC  ->  ( ( Jt  D )  e.  Comp  <->  ( D  e.  ( Clsd `  J )  /\  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s
) ) )
423, 41ax-mp 8 . . . . . 6  |-  ( ( Jt  D )  e.  Comp  <->  ( D  e.  ( Clsd `  J )  /\  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s
) )
4329, 39, 42sylanbrc 647 . . . . 5  |-  ( ph  ->  ( Jt  D )  e.  Comp )
44 ftalem.3 . . . . . . . . 9  |-  ( ph  ->  F  e.  (Poly `  S ) )
45 plycn 20181 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  F  e.  ( CC -cn-> CC ) )
4644, 45syl 16 . . . . . . . 8  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
47 abscncf 18933 . . . . . . . . 9  |-  abs  e.  ( CC -cn-> RR )
4847a1i 11 . . . . . . . 8  |-  ( ph  ->  abs  e.  ( CC
-cn-> RR ) )
4946, 48cncfco 18939 . . . . . . 7  |-  ( ph  ->  ( abs  o.  F
)  e.  ( CC
-cn-> RR ) )
50 ssid 3369 . . . . . . . 8  |-  CC  C_  CC
51 ax-resscn 9049 . . . . . . . 8  |-  RR  C_  CC
524cnfldtop 18820 . . . . . . . . . . 11  |-  J  e. 
Top
535toponunii 16999 . . . . . . . . . . . 12  |-  CC  =  U. J
5453restid 13663 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  ( Jt  CC )  =  J
)
5552, 54ax-mp 8 . . . . . . . . . 10  |-  ( Jt  CC )  =  J
5655eqcomi 2442 . . . . . . . . 9  |-  J  =  ( Jt  CC )
574tgioo2 18836 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( Jt  RR )
584, 56, 57cncfcn 18941 . . . . . . . 8  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  ( CC -cn-> RR )  =  ( J  Cn  ( topGen ` 
ran  (,) ) ) )
5950, 51, 58mp2an 655 . . . . . . 7  |-  ( CC
-cn-> RR )  =  ( J  Cn  ( topGen ` 
ran  (,) ) )
6049, 59syl6eleq 2528 . . . . . 6  |-  ( ph  ->  ( abs  o.  F
)  e.  ( J  Cn  ( topGen `  ran  (,) ) ) )
6153cnrest 17351 . . . . . 6  |-  ( ( ( abs  o.  F
)  e.  ( J  Cn  ( topGen `  ran  (,) ) )  /\  D  C_  CC )  ->  (
( abs  o.  F
)  |`  D )  e.  ( ( Jt  D )  Cn  ( topGen `  ran  (,) ) ) )
6260, 3, 61sylancl 645 . . . . 5  |-  ( ph  ->  ( ( abs  o.  F )  |`  D )  e.  ( ( Jt  D )  Cn  ( topGen ` 
ran  (,) ) ) )
6314rpge0d 10654 . . . . . . 7  |-  ( ph  ->  0  <_  R )
64 fveq2 5730 . . . . . . . . . 10  |-  ( y  =  0  ->  ( abs `  y )  =  ( abs `  0
) )
65 abs0 12092 . . . . . . . . . 10  |-  ( abs `  0 )  =  0
6664, 65syl6eq 2486 . . . . . . . . 9  |-  ( y  =  0  ->  ( abs `  y )  =  0 )
6766breq1d 4224 . . . . . . . 8  |-  ( y  =  0  ->  (
( abs `  y
)  <_  R  <->  0  <_  R ) )
6867, 1elrab2 3096 . . . . . . 7  |-  ( 0  e.  D  <->  ( 0  e.  CC  /\  0  <_  R ) )
6913, 63, 68sylanbrc 647 . . . . . 6  |-  ( ph  ->  0  e.  D )
70 ne0i 3636 . . . . . 6  |-  ( 0  e.  D  ->  D  =/=  (/) )
7169, 70syl 16 . . . . 5  |-  ( ph  ->  D  =/=  (/) )
728, 9, 43, 62, 71evth2 18987 . . . 4  |-  ( ph  ->  E. z  e.  D  A. x  e.  D  ( ( ( abs 
o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x ) )
73 fvres 5747 . . . . . . . . 9  |-  ( z  e.  D  ->  (
( ( abs  o.  F )  |`  D ) `
 z )  =  ( ( abs  o.  F ) `  z
) )
7473ad2antlr 709 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 z )  =  ( ( abs  o.  F ) `  z
) )
75 plyf 20119 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
7644, 75syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : CC --> CC )
7776ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  F : CC --> CC )
78 simplr 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  z  e.  D )
793, 78sseldi 3348 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  z  e.  CC )
80 fvco3 5802 . . . . . . . . 9  |-  ( ( F : CC --> CC  /\  z  e.  CC )  ->  ( ( abs  o.  F ) `  z
)  =  ( abs `  ( F `  z
) ) )
8177, 79, 80syl2anc 644 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( abs  o.  F
) `  z )  =  ( abs `  ( F `  z )
) )
8274, 81eqtrd 2470 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 z )  =  ( abs `  ( F `  z )
) )
83 fvres 5747 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( abs  o.  F )  |`  D ) `
 x )  =  ( ( abs  o.  F ) `  x
) )
8483adantl 454 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 x )  =  ( ( abs  o.  F ) `  x
) )
85 simpr 449 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  x  e.  D )
863, 85sseldi 3348 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  x  e.  CC )
87 fvco3 5802 . . . . . . . . 9  |-  ( ( F : CC --> CC  /\  x  e.  CC )  ->  ( ( abs  o.  F ) `  x
)  =  ( abs `  ( F `  x
) ) )
8877, 86, 87syl2anc 644 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( abs  o.  F
) `  x )  =  ( abs `  ( F `  x )
) )
8984, 88eqtrd 2470 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 x )  =  ( abs `  ( F `  x )
) )
9082, 89breq12d 4227 . . . . . 6  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( ( abs 
o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x )  <->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) ) ) )
9190ralbidva 2723 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  ( A. x  e.  D  ( ( ( abs 
o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x )  <->  A. x  e.  D  ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) ) ) )
9291rexbidva 2724 . . . 4  |-  ( ph  ->  ( E. z  e.  D  A. x  e.  D  ( ( ( abs  o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x )  <->  E. z  e.  D  A. x  e.  D  ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) ) ) )
9372, 92mpbid 203 . . 3  |-  ( ph  ->  E. z  e.  D  A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
) )
94 ssrexv 3410 . . 3  |-  ( D 
C_  CC  ->  ( E. z  e.  D  A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  E. z  e.  CC  A. x  e.  D  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
953, 93, 94mpsyl 62 . 2  |-  ( ph  ->  E. z  e.  CC  A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
) )
9669adantr 453 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  0  e.  D )
97 fveq2 5730 . . . . . . . . . 10  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
9897fveq2d 5734 . . . . . . . . 9  |-  ( x  =  0  ->  ( abs `  ( F `  x ) )  =  ( abs `  ( F `  0 )
) )
9998breq2d 4226 . . . . . . . 8  |-  ( x  =  0  ->  (
( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  <->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F ` 
0 ) ) ) )
10099rspcv 3050 . . . . . . 7  |-  ( 0  e.  D  ->  ( A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
)  ->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F ` 
0 ) ) ) )
10196, 100syl 16 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F ` 
0 ) ) ) )
10276ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  F : CC --> CC )
103 ffvelrn 5870 . . . . . . . . . . 11  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
104102, 12, 103sylancl 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( F `  0 )  e.  CC )
105104abscld 12240 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F ` 
0 ) )  e.  RR )
106 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  x  e.  ( CC  \  D
) )
107106eldifad 3334 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  x  e.  CC )
108102, 107ffvelrnd 5873 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( F `  x )  e.  CC )
109108abscld 12240 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F `  x ) )  e.  RR )
110 ftalem3.8 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  CC  ( R  <  ( abs `  x )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
111110ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  A. x  e.  CC  ( R  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
112106eldifbd 3335 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  -.  x  e.  D )
11333baib 873 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
x  e.  D  <->  ( abs `  x )  <_  R
) )
114107, 113syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  (
x  e.  D  <->  ( abs `  x )  <_  R
) )
115112, 114mtbid 293 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  -.  ( abs `  x )  <_  R )
11630ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  R  e.  RR )
117107abscld 12240 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  x )  e.  RR )
118116, 117ltnled 9222 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( R  <  ( abs `  x
)  <->  -.  ( abs `  x )  <_  R
) )
119115, 118mpbird 225 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  R  <  ( abs `  x
) )
120 rsp 2768 . . . . . . . . . 10  |-  ( A. x  e.  CC  ( R  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) )  ->  ( x  e.  CC  ->  ( R  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
121111, 107, 119, 120syl3c 60 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) )
122105, 109, 121ltled 9223 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F ` 
0 ) )  <_ 
( abs `  ( F `  x )
) )
123 simplr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  z  e.  CC )
124102, 123ffvelrnd 5873 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( F `  z )  e.  CC )
125124abscld 12240 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F `  z ) )  e.  RR )
126 letr 9169 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  z )
)  e.  RR  /\  ( abs `  ( F `
 0 ) )  e.  RR  /\  ( abs `  ( F `  x ) )  e.  RR )  ->  (
( ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  0
) )  /\  ( abs `  ( F ` 
0 ) )  <_ 
( abs `  ( F `  x )
) )  ->  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
127125, 105, 109, 126syl3anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  (
( ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  0
) )  /\  ( abs `  ( F ` 
0 ) )  <_ 
( abs `  ( F `  x )
) )  ->  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
128122, 127mpan2d 657 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  (
( abs `  ( F `  z )
)  <_  ( abs `  ( F `  0
) )  ->  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
129128ralrimdva 2798 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  0 )
)  ->  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
130101, 129syld 43 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
131130ancld 538 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  /\  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) ) )
132 ralunb 3530 . . . . 5  |-  ( A. x  e.  ( D  u.  ( CC  \  D
) ) ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) )  <->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  /\  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
133 undif2 3706 . . . . . . 7  |-  ( D  u.  ( CC  \  D ) )  =  ( D  u.  CC )
134 ssequn1 3519 . . . . . . . 8  |-  ( D 
C_  CC  <->  ( D  u.  CC )  =  CC )
1353, 134mpbi 201 . . . . . . 7  |-  ( D  u.  CC )  =  CC
136133, 135eqtri 2458 . . . . . 6  |-  ( D  u.  ( CC  \  D ) )  =  CC
137136raleqi 2910 . . . . 5  |-  ( A. x  e.  ( D  u.  ( CC  \  D
) ) ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) )  <->  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )
138132, 137bitr3i 244 . . . 4  |-  ( ( A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
)  /\  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )  <->  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )
139131, 138syl6ib 219 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
140139reximdva 2820 . 2  |-  ( ph  ->  ( E. z  e.  CC  A. x  e.  D  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
14195, 140mpd 15 1  |-  ( ph  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711    \ cdif 3319    u. cun 3320    C_ wss 3322   (/)c0 3630   class class class wbr 4214   ran crn 4881    |` cres 4882    o. ccom 4884   -->wf 5452   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   RR*cxr 9121    < clt 9122    <_ cle 9123    - cmin 9293   -ucneg 9294   NNcn 10002   RR+crp 10614   (,)cioo 10918   abscabs 12041   ↾t crest 13650   TopOpenctopn 13651   topGenctg 13667   * Metcxmt 16688  ℂfldccnfld 16705   Topctop 16960  TopOnctopon 16961   Clsdccld 17082    Cn ccn 17290   Compccmp 17451   -cn->ccncf 18908  Polycply 20105  coeffccoe 20107  degcdgr 20108
This theorem is referenced by:  fta  20864
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-rlim 12285  df-sum 12482  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-cls 17087  df-cn 17293  df-cnp 17294  df-haus 17381  df-cmp 17452  df-tx 17596  df-hmeo 17789  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-0p 19564  df-ply 20109  df-coe 20111  df-dgr 20112
  Copyright terms: Public domain W3C validator