MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem4 Unicode version

Theorem ftalem4 20313
Description: Lemma for fta 20317: Closure of the auxiliary variables for ftalem5 20314. (Contributed by Mario Carneiro, 20-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem4.5  |-  ( ph  ->  ( F `  0
)  =/=  0 )
ftalem4.6  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
ftalem4.7  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^ c  ( 1  /  K ) )
ftalem4.8  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
ftalem4.9  |-  X  =  if ( 1  <_  U ,  1 ,  U )
Assertion
Ref Expression
ftalem4  |-  ( ph  ->  ( ( K  e.  NN  /\  ( A `
 K )  =/=  0 )  /\  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) ) )
Distinct variable groups:    k, n, A    k, K, n    k, N, n    k, F, n    ph, k    S, k    T, k    k, X, n
Allowed substitution hints:    ph( n)    S( n)    T( n)    U( k, n)

Proof of Theorem ftalem4
StepHypRef Expression
1 ftalem4.6 . . . 4  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
2 ssrab2 3258 . . . . . 6  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  NN
3 nnuz 10263 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
42, 3sseqtri 3210 . . . . 5  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  ( ZZ>=
`  1 )
5 ftalem.4 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
65nnne0d 9790 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
7 ftalem.3 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  (Poly `  S ) )
8 ftalem.2 . . . . . . . . . . . 12  |-  N  =  (deg `  F )
9 ftalem.1 . . . . . . . . . . . 12  |-  A  =  (coeff `  F )
108, 9dgreq0 19646 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )
117, 10syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )
12 fveq2 5525 . . . . . . . . . . . 12  |-  ( F  =  0 p  -> 
(deg `  F )  =  (deg `  0 p
) )
13 dgr0 19643 . . . . . . . . . . . 12  |-  (deg ` 
0 p )  =  0
1412, 13syl6eq 2331 . . . . . . . . . . 11  |-  ( F  =  0 p  -> 
(deg `  F )  =  0 )
158, 14syl5eq 2327 . . . . . . . . . 10  |-  ( F  =  0 p  ->  N  =  0 )
1611, 15syl6bir 220 . . . . . . . . 9  |-  ( ph  ->  ( ( A `  N )  =  0  ->  N  =  0 ) )
1716necon3d 2484 . . . . . . . 8  |-  ( ph  ->  ( N  =/=  0  ->  ( A `  N
)  =/=  0 ) )
186, 17mpd 14 . . . . . . 7  |-  ( ph  ->  ( A `  N
)  =/=  0 )
19 fveq2 5525 . . . . . . . . 9  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
2019neeq1d 2459 . . . . . . . 8  |-  ( n  =  N  ->  (
( A `  n
)  =/=  0  <->  ( A `  N )  =/=  0 ) )
2120elrab 2923 . . . . . . 7  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( N  e.  NN  /\  ( A `
 N )  =/=  0 ) )
225, 18, 21sylanbrc 645 . . . . . 6  |-  ( ph  ->  N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
23 ne0i 3461 . . . . . 6  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  ->  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )
2422, 23syl 15 . . . . 5  |-  ( ph  ->  { n  e.  NN  |  ( A `  n )  =/=  0 }  =/=  (/) )
25 infmssuzcl 10301 . . . . 5  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
264, 24, 25sylancr 644 . . . 4  |-  ( ph  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
271, 26syl5eqel 2367 . . 3  |-  ( ph  ->  K  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
28 fveq2 5525 . . . . 5  |-  ( n  =  K  ->  ( A `  n )  =  ( A `  K ) )
2928neeq1d 2459 . . . 4  |-  ( n  =  K  ->  (
( A `  n
)  =/=  0  <->  ( A `  K )  =/=  0 ) )
3029elrab 2923 . . 3  |-  ( K  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( K  e.  NN  /\  ( A `
 K )  =/=  0 ) )
3127, 30sylib 188 . 2  |-  ( ph  ->  ( K  e.  NN  /\  ( A `  K
)  =/=  0 ) )
32 ftalem4.7 . . . 4  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^ c  ( 1  /  K ) )
33 plyf 19580 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
347, 33syl 15 . . . . . . . 8  |-  ( ph  ->  F : CC --> CC )
35 0cn 8831 . . . . . . . 8  |-  0  e.  CC
36 ffvelrn 5663 . . . . . . . 8  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
3734, 35, 36sylancl 643 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  e.  CC )
389coef3 19614 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
397, 38syl 15 . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
4031simpld 445 . . . . . . . . 9  |-  ( ph  ->  K  e.  NN )
4140nnnn0d 10018 . . . . . . . 8  |-  ( ph  ->  K  e.  NN0 )
42 ffvelrn 5663 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  K  e.  NN0 )  -> 
( A `  K
)  e.  CC )
4339, 41, 42syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( A `  K
)  e.  CC )
4431simprd 449 . . . . . . 7  |-  ( ph  ->  ( A `  K
)  =/=  0 )
4537, 43, 44divcld 9536 . . . . . 6  |-  ( ph  ->  ( ( F ` 
0 )  /  ( A `  K )
)  e.  CC )
4645negcld 9144 . . . . 5  |-  ( ph  -> 
-u ( ( F `
 0 )  / 
( A `  K
) )  e.  CC )
4740nnrecred 9791 . . . . . 6  |-  ( ph  ->  ( 1  /  K
)  e.  RR )
4847recnd 8861 . . . . 5  |-  ( ph  ->  ( 1  /  K
)  e.  CC )
4946, 48cxpcld 20055 . . . 4  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^ c  ( 1  /  K ) )  e.  CC )
5032, 49syl5eqel 2367 . . 3  |-  ( ph  ->  T  e.  CC )
51 ftalem4.8 . . . 4  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
52 ftalem4.5 . . . . . 6  |-  ( ph  ->  ( F `  0
)  =/=  0 )
5337, 52absrpcld 11930 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  0 )
)  e.  RR+ )
54 fzfid 11035 . . . . . . 7  |-  ( ph  ->  ( ( K  + 
1 ) ... N
)  e.  Fin )
55 peano2nn0 10004 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
5641, 55syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
57 elfzuz 10794 . . . . . . . . . . 11  |-  ( k  e.  ( ( K  +  1 ) ... N )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
58 eluznn0 10288 . . . . . . . . . . 11  |-  ( ( ( K  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( K  +  1
) ) )  -> 
k  e.  NN0 )
5956, 57, 58syl2an 463 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  k  e.  NN0 )
60 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
6139, 60sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
6259, 61syldan 456 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( A `  k )  e.  CC )
63 expcl 11121 . . . . . . . . . . 11  |-  ( ( T  e.  CC  /\  k  e.  NN0 )  -> 
( T ^ k
)  e.  CC )
6450, 63sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( T ^ k )  e.  CC )
6559, 64syldan 456 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( T ^ k )  e.  CC )
6662, 65mulcld 8855 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( T ^ k ) )  e.  CC )
6766abscld 11918 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( T ^ k
) ) )  e.  RR )
6854, 67fsumrecl 12207 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  e.  RR )
6966absge0d 11926 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
7054, 67, 69fsumge0 12253 . . . . . 6  |-  ( ph  ->  0  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
7168, 70ge0p1rpd 10416 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  e.  RR+ )
7253, 71rpdivcld 10407 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )  e.  RR+ )
7351, 72syl5eqel 2367 . . 3  |-  ( ph  ->  U  e.  RR+ )
74 ftalem4.9 . . . 4  |-  X  =  if ( 1  <_  U ,  1 ,  U )
75 1rp 10358 . . . . 5  |-  1  e.  RR+
76 ifcl 3601 . . . . 5  |-  ( ( 1  e.  RR+  /\  U  e.  RR+ )  ->  if ( 1  <_  U ,  1 ,  U
)  e.  RR+ )
7775, 73, 76sylancr 644 . . . 4  |-  ( ph  ->  if ( 1  <_  U ,  1 ,  U )  e.  RR+ )
7874, 77syl5eqel 2367 . . 3  |-  ( ph  ->  X  e.  RR+ )
7950, 73, 783jca 1132 . 2  |-  ( ph  ->  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) )
8031, 79jca 518 1  |-  ( ph  ->  ( ( K  e.  NN  /\  ( A `
 K )  =/=  0 )  /\  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547    C_ wss 3152   (/)c0 3455   ifcif 3565   class class class wbr 4023   `'ccnv 4688   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868   -ucneg 9038    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZ>=cuz 10230   RR+crp 10354   ...cfz 10782   ^cexp 11104   abscabs 11719   sum_csu 12158   0 pc0p 19024  Polycply 19566  coeffccoe 19568  degcdgr 19569    ^ c ccxp 19913
This theorem is referenced by:  ftalem5  20314
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-0p 19025  df-limc 19216  df-dv 19217  df-ply 19570  df-coe 19572  df-dgr 19573  df-log 19914  df-cxp 19915
  Copyright terms: Public domain W3C validator