MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem4 Unicode version

Theorem ftalem4 20329
Description: Lemma for fta 20333: Closure of the auxiliary variables for ftalem5 20330. (Contributed by Mario Carneiro, 20-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem4.5  |-  ( ph  ->  ( F `  0
)  =/=  0 )
ftalem4.6  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
ftalem4.7  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^ c  ( 1  /  K ) )
ftalem4.8  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
ftalem4.9  |-  X  =  if ( 1  <_  U ,  1 ,  U )
Assertion
Ref Expression
ftalem4  |-  ( ph  ->  ( ( K  e.  NN  /\  ( A `
 K )  =/=  0 )  /\  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) ) )
Distinct variable groups:    k, n, A    k, K, n    k, N, n    k, F, n    ph, k    S, k    T, k    k, X, n
Allowed substitution hints:    ph( n)    S( n)    T( n)    U( k, n)

Proof of Theorem ftalem4
StepHypRef Expression
1 ftalem4.6 . . . 4  |-  K  =  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )
2 ssrab2 3271 . . . . . 6  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  NN
3 nnuz 10279 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
42, 3sseqtri 3223 . . . . 5  |-  { n  e.  NN  |  ( A `
 n )  =/=  0 }  C_  ( ZZ>=
`  1 )
5 ftalem.4 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
65nnne0d 9806 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
7 ftalem.3 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  (Poly `  S ) )
8 ftalem.2 . . . . . . . . . . . 12  |-  N  =  (deg `  F )
9 ftalem.1 . . . . . . . . . . . 12  |-  A  =  (coeff `  F )
108, 9dgreq0 19662 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )
117, 10syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )
12 fveq2 5541 . . . . . . . . . . . 12  |-  ( F  =  0 p  -> 
(deg `  F )  =  (deg `  0 p
) )
13 dgr0 19659 . . . . . . . . . . . 12  |-  (deg ` 
0 p )  =  0
1412, 13syl6eq 2344 . . . . . . . . . . 11  |-  ( F  =  0 p  -> 
(deg `  F )  =  0 )
158, 14syl5eq 2340 . . . . . . . . . 10  |-  ( F  =  0 p  ->  N  =  0 )
1611, 15syl6bir 220 . . . . . . . . 9  |-  ( ph  ->  ( ( A `  N )  =  0  ->  N  =  0 ) )
1716necon3d 2497 . . . . . . . 8  |-  ( ph  ->  ( N  =/=  0  ->  ( A `  N
)  =/=  0 ) )
186, 17mpd 14 . . . . . . 7  |-  ( ph  ->  ( A `  N
)  =/=  0 )
19 fveq2 5541 . . . . . . . . 9  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
2019neeq1d 2472 . . . . . . . 8  |-  ( n  =  N  ->  (
( A `  n
)  =/=  0  <->  ( A `  N )  =/=  0 ) )
2120elrab 2936 . . . . . . 7  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( N  e.  NN  /\  ( A `
 N )  =/=  0 ) )
225, 18, 21sylanbrc 645 . . . . . 6  |-  ( ph  ->  N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
23 ne0i 3474 . . . . . 6  |-  ( N  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  ->  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )
2422, 23syl 15 . . . . 5  |-  ( ph  ->  { n  e.  NN  |  ( A `  n )  =/=  0 }  =/=  (/) )
25 infmssuzcl 10317 . . . . 5  |-  ( ( { n  e.  NN  |  ( A `  n )  =/=  0 }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  ( A `
 n )  =/=  0 }  =/=  (/) )  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
264, 24, 25sylancr 644 . . . 4  |-  ( ph  ->  sup ( { n  e.  NN  |  ( A `
 n )  =/=  0 } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  ( A `  n )  =/=  0 } )
271, 26syl5eqel 2380 . . 3  |-  ( ph  ->  K  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 } )
28 fveq2 5541 . . . . 5  |-  ( n  =  K  ->  ( A `  n )  =  ( A `  K ) )
2928neeq1d 2472 . . . 4  |-  ( n  =  K  ->  (
( A `  n
)  =/=  0  <->  ( A `  K )  =/=  0 ) )
3029elrab 2936 . . 3  |-  ( K  e.  { n  e.  NN  |  ( A `
 n )  =/=  0 }  <->  ( K  e.  NN  /\  ( A `
 K )  =/=  0 ) )
3127, 30sylib 188 . 2  |-  ( ph  ->  ( K  e.  NN  /\  ( A `  K
)  =/=  0 ) )
32 ftalem4.7 . . . 4  |-  T  =  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^ c  ( 1  /  K ) )
33 plyf 19596 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
347, 33syl 15 . . . . . . . 8  |-  ( ph  ->  F : CC --> CC )
35 0cn 8847 . . . . . . . 8  |-  0  e.  CC
36 ffvelrn 5679 . . . . . . . 8  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
3734, 35, 36sylancl 643 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  e.  CC )
389coef3 19630 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
397, 38syl 15 . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
4031simpld 445 . . . . . . . . 9  |-  ( ph  ->  K  e.  NN )
4140nnnn0d 10034 . . . . . . . 8  |-  ( ph  ->  K  e.  NN0 )
42 ffvelrn 5679 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  K  e.  NN0 )  -> 
( A `  K
)  e.  CC )
4339, 41, 42syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( A `  K
)  e.  CC )
4431simprd 449 . . . . . . 7  |-  ( ph  ->  ( A `  K
)  =/=  0 )
4537, 43, 44divcld 9552 . . . . . 6  |-  ( ph  ->  ( ( F ` 
0 )  /  ( A `  K )
)  e.  CC )
4645negcld 9160 . . . . 5  |-  ( ph  -> 
-u ( ( F `
 0 )  / 
( A `  K
) )  e.  CC )
4740nnrecred 9807 . . . . . 6  |-  ( ph  ->  ( 1  /  K
)  e.  RR )
4847recnd 8877 . . . . 5  |-  ( ph  ->  ( 1  /  K
)  e.  CC )
4946, 48cxpcld 20071 . . . 4  |-  ( ph  ->  ( -u ( ( F `  0 )  /  ( A `  K ) )  ^ c  ( 1  /  K ) )  e.  CC )
5032, 49syl5eqel 2380 . . 3  |-  ( ph  ->  T  e.  CC )
51 ftalem4.8 . . . 4  |-  U  =  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )
52 ftalem4.5 . . . . . 6  |-  ( ph  ->  ( F `  0
)  =/=  0 )
5337, 52absrpcld 11946 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  0 )
)  e.  RR+ )
54 fzfid 11051 . . . . . . 7  |-  ( ph  ->  ( ( K  + 
1 ) ... N
)  e.  Fin )
55 peano2nn0 10020 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
5641, 55syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
57 elfzuz 10810 . . . . . . . . . . 11  |-  ( k  e.  ( ( K  +  1 ) ... N )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
58 eluznn0 10304 . . . . . . . . . . 11  |-  ( ( ( K  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( K  +  1
) ) )  -> 
k  e.  NN0 )
5956, 57, 58syl2an 463 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  k  e.  NN0 )
60 ffvelrn 5679 . . . . . . . . . . 11  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
6139, 60sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
6259, 61syldan 456 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( A `  k )  e.  CC )
63 expcl 11137 . . . . . . . . . . 11  |-  ( ( T  e.  CC  /\  k  e.  NN0 )  -> 
( T ^ k
)  e.  CC )
6450, 63sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( T ^ k )  e.  CC )
6559, 64syldan 456 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( T ^ k )  e.  CC )
6662, 65mulcld 8871 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  (
( A `  k
)  x.  ( T ^ k ) )  e.  CC )
6766abscld 11934 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( abs `  ( ( A `
 k )  x.  ( T ^ k
) ) )  e.  RR )
6854, 67fsumrecl 12223 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  e.  RR )
6966absge0d 11942 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
7054, 67, 69fsumge0 12269 . . . . . 6  |-  ( ph  ->  0  <_  sum_ k  e.  ( ( K  + 
1 ) ... N
) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) ) )
7168, 70ge0p1rpd 10432 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
( A `  k
)  x.  ( T ^ k ) ) )  +  1 )  e.  RR+ )
7253, 71rpdivcld 10423 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  0 )
)  /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  ( ( A `  k )  x.  ( T ^
k ) ) )  +  1 ) )  e.  RR+ )
7351, 72syl5eqel 2380 . . 3  |-  ( ph  ->  U  e.  RR+ )
74 ftalem4.9 . . . 4  |-  X  =  if ( 1  <_  U ,  1 ,  U )
75 1rp 10374 . . . . 5  |-  1  e.  RR+
76 ifcl 3614 . . . . 5  |-  ( ( 1  e.  RR+  /\  U  e.  RR+ )  ->  if ( 1  <_  U ,  1 ,  U
)  e.  RR+ )
7775, 73, 76sylancr 644 . . . 4  |-  ( ph  ->  if ( 1  <_  U ,  1 ,  U )  e.  RR+ )
7874, 77syl5eqel 2380 . . 3  |-  ( ph  ->  X  e.  RR+ )
7950, 73, 783jca 1132 . 2  |-  ( ph  ->  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) )
8031, 79jca 518 1  |-  ( ph  ->  ( ( K  e.  NN  /\  ( A `
 K )  =/=  0 )  /\  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560    C_ wss 3165   (/)c0 3468   ifcif 3578   class class class wbr 4039   `'ccnv 4704   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   -ucneg 9054    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798   ^cexp 11120   abscabs 11735   sum_csu 12174   0 pc0p 19040  Polycply 19582  coeffccoe 19584  degcdgr 19585    ^ c ccxp 19929
This theorem is referenced by:  ftalem5  20330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-0p 19041  df-limc 19232  df-dv 19233  df-ply 19586  df-coe 19588  df-dgr 19589  df-log 19930  df-cxp 19931
  Copyright terms: Public domain W3C validator