MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1a Unicode version

Theorem ftc1a 19384
Description: The Fundamental Theorem of Calculus, part one. The function  G formed by varying the right endpoint of an integral of  F is continuous if  F is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L ^1 )
ftc1a.f  |-  ( ph  ->  F : D --> CC )
Assertion
Ref Expression
ftc1a  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Distinct variable groups:    x, t, D    t, A, x    t, B, x    ph, t, x   
t, F, x
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1a
Dummy variables  s  u  w  y  z 
r  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . 3  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
2 ftc1.a . . 3  |-  ( ph  ->  A  e.  RR )
3 ftc1.b . . 3  |-  ( ph  ->  B  e.  RR )
4 ftc1.le . . 3  |-  ( ph  ->  A  <_  B )
5 ftc1.s . . 3  |-  ( ph  ->  ( A (,) B
)  C_  D )
6 ftc1.d . . 3  |-  ( ph  ->  D  C_  RR )
7 ftc1.i . . 3  |-  ( ph  ->  F  e.  L ^1 )
8 ftc1a.f . . 3  |-  ( ph  ->  F : D --> CC )
91, 2, 3, 4, 5, 6, 7, 8ftc1lem2 19383 . 2  |-  ( ph  ->  G : ( A [,] B ) --> CC )
10 fvex 5539 . . . . . . . 8  |-  ( F `
 w )  e. 
_V
1110a1i 10 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  w  e.  D )  ->  ( F `  w )  e.  _V )
128feqmptd 5575 . . . . . . . . 9  |-  ( ph  ->  F  =  ( w  e.  D  |->  ( F `
 w ) ) )
1312, 7eqeltrrd 2358 . . . . . . . 8  |-  ( ph  ->  ( w  e.  D  |->  ( F `  w
) )  e.  L ^1 )
1413adantr 451 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( w  e.  D  |->  ( F `
 w ) )  e.  L ^1 )
15 simpr 447 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1611, 14, 15itgcn 19197 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. u  e. 
dom  vol ( ( u 
C_  D  /\  ( vol `  u )  < 
d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )
17 oveq12 5867 . . . . . . . . . . . . . . 15  |-  ( ( s  =  z  /\  r  =  y )  ->  ( s  -  r
)  =  ( z  -  y ) )
1817fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( s  =  z  /\  r  =  y )  ->  ( abs `  (
s  -  r ) )  =  ( abs `  ( z  -  y
) ) )
1918breq1d 4033 . . . . . . . . . . . . 13  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( abs `  (
s  -  r ) )  <  d  <->  ( abs `  ( z  -  y
) )  <  d
) )
20 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( s  =  z  ->  ( G `  s )  =  ( G `  z ) )
21 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( r  =  y  ->  ( G `  r )  =  ( G `  y ) )
2220, 21oveqan12d 5877 . . . . . . . . . . . . . . 15  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( G `  s )  -  ( G `  r )
)  =  ( ( G `  z )  -  ( G `  y ) ) )
2322fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( s  =  z  /\  r  =  y )  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  =  ( abs `  ( ( G `  z )  -  ( G `  y )
) ) )
2423breq1d 4033 . . . . . . . . . . . . 13  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e  <->  ( abs `  ( ( G `  z )  -  ( G `  y )
) )  <  e
) )
2519, 24imbi12d 311 . . . . . . . . . . . 12  |-  ( ( s  =  z  /\  r  =  y )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) )
2625ancoms 439 . . . . . . . . . . 11  |-  ( ( r  =  y  /\  s  =  z )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) )
27 oveq12 5867 . . . . . . . . . . . . . . 15  |-  ( ( s  =  y  /\  r  =  z )  ->  ( s  -  r
)  =  ( y  -  z ) )
2827fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( s  =  y  /\  r  =  z )  ->  ( abs `  (
s  -  r ) )  =  ( abs `  ( y  -  z
) ) )
2928breq1d 4033 . . . . . . . . . . . . 13  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( abs `  (
s  -  r ) )  <  d  <->  ( abs `  ( y  -  z
) )  <  d
) )
30 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( s  =  y  ->  ( G `  s )  =  ( G `  y ) )
31 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( r  =  z  ->  ( G `  r )  =  ( G `  z ) )
3230, 31oveqan12d 5877 . . . . . . . . . . . . . . 15  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( G `  s )  -  ( G `  r )
)  =  ( ( G `  y )  -  ( G `  z ) ) )
3332fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( s  =  y  /\  r  =  z )  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  =  ( abs `  ( ( G `  y )  -  ( G `  z )
) ) )
3433breq1d 4033 . . . . . . . . . . . . 13  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e  <->  ( abs `  ( ( G `  y )  -  ( G `  z )
) )  <  e
) )
3529, 34imbi12d 311 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  r  =  z )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  d  -> 
( abs `  (
( G `  y
)  -  ( G `
 z ) ) )  <  e ) ) )
3635ancoms 439 . . . . . . . . . . 11  |-  ( ( r  =  z  /\  s  =  y )  ->  ( ( ( abs `  ( s  -  r
) )  <  d  ->  ( abs `  (
( G `  s
)  -  ( G `
 r ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  d  -> 
( abs `  (
( G `  y
)  -  ( G `
 z ) ) )  <  e ) ) )
37 iccssre 10731 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
382, 3, 37syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( A [,] B
)  C_  RR )
3938ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  d  e.  RR+ ) )  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e ) )  ->  ( A [,] B )  C_  RR )
4038ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( A [,] B )  C_  RR )
41 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  z  e.  ( A [,] B
) )
4240, 41sseldd 3181 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  z  e.  RR )
4342recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  z  e.  CC )
44 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  y  e.  ( A [,] B
) )
4540, 44sseldd 3181 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  y  e.  RR )
4645recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  y  e.  CC )
4743, 46abssubd 11935 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( abs `  ( z  -  y ) )  =  ( abs `  (
y  -  z ) ) )
4847breq1d 4033 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( abs `  (
z  -  y ) )  <  d  <->  ( abs `  ( y  -  z
) )  <  d
) )
499ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  G : ( A [,] B ) --> CC )
50 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( G : ( A [,] B ) --> CC 
/\  z  e.  ( A [,] B ) )  ->  ( G `  z )  e.  CC )
5149, 41, 50syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( G `  z )  e.  CC )
52 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( G : ( A [,] B ) --> CC 
/\  y  e.  ( A [,] B ) )  ->  ( G `  y )  e.  CC )
5349, 44, 52syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( G `  y )  e.  CC )
5451, 53abssubd 11935 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  =  ( abs `  ( ( G `  y )  -  ( G `  z ) ) ) )
5554breq1d 4033 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e  <->  ( abs `  ( ( G `  y )  -  ( G `  z )
) )  <  e
) )
5648, 55imbi12d 311 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  d  -> 
( abs `  (
( G `  y
)  -  ( G `
 z ) ) )  <  e ) ) )
57 simpr3 963 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  y  <_  z )
582adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  A  e.  RR )
593adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  B  e.  RR )
604adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  A  <_  B )
615adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  ( A (,) B )  C_  D )
626adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  D  C_  RR )
637adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  F  e.  L ^1 )
648adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  F : D --> CC )
65 simpr1 961 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  y  e.  ( A [,] B
) )
66 simpr2 962 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  z  e.  ( A [,] B
) )
671, 58, 59, 60, 61, 62, 63, 64, 65, 66ftc1lem1 19382 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
y  e.  ( A [,] B )  /\  z  e.  ( A [,] B )  /\  y  <_  z ) )  /\  y  <_  z )  -> 
( ( G `  z )  -  ( G `  y )
)  =  S. ( y (,) z ) ( F `  t
)  _d t )
6857, 67mpdan 649 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  (
( G `  z
)  -  ( G `
 y ) )  =  S. ( y (,) z ) ( F `  t )  _d t )
6968adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  d  e.  RR+ ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  (
( G `  z
)  -  ( G `
 y ) )  =  S. ( y (,) z ) ( F `  t )  _d t )
7069ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
( G `  z
)  -  ( G `
 y ) )  =  S. ( y (,) z ) ( F `  t )  _d t )
7170fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  =  ( abs `  S. ( y (,) z ) ( F `  t
)  _d t ) )
72 fvex 5539 . . . . . . . . . . . . . . . . 17  |-  ( F `
 t )  e. 
_V
7372a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  ( y (,) z
) )  ->  ( F `  t )  e.  _V )
742ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A  e.  RR )
7574rexrd 8881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A  e.  RR* )
76 simprl1 1000 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  y  e.  ( A [,] B
) )
773ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  B  e.  RR )
78 elicc2 10715 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
7974, 77, 78syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y  e.  ( A [,] B )  <->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
8076, 79mpbid 201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
8180simp2d 968 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A  <_  y )
82 iooss1 10691 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR*  /\  A  <_  y )  ->  (
y (,) z ) 
C_  ( A (,) z ) )
8375, 81, 82syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z ) 
C_  ( A (,) z ) )
8477rexrd 8881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  B  e.  RR* )
85 simprl2 1001 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  z  e.  ( A [,] B
) )
86 elicc2 10715 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( z  e.  ( A [,] B )  <-> 
( z  e.  RR  /\  A  <_  z  /\  z  <_  B ) ) )
8774, 77, 86syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  e.  ( A [,] B )  <->  ( z  e.  RR  /\  A  <_ 
z  /\  z  <_  B ) ) )
8885, 87mpbid 201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  e.  RR  /\  A  <_  z  /\  z  <_  B ) )
8988simp3d 969 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  z  <_  B )
90 iooss2 10692 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR*  /\  z  <_  B )  ->  ( A (,) z )  C_  ( A (,) B ) )
9184, 89, 90syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( A (,) z )  C_  ( A (,) B ) )
9283, 91sstrd 3189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z ) 
C_  ( A (,) B ) )
935ad3antrrr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( A (,) B )  C_  D )
9492, 93sstrd 3189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z ) 
C_  D )
95 ioombl 18922 . . . . . . . . . . . . . . . . . 18  |-  ( y (,) z )  e. 
dom  vol
9695a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y (,) z )  e.  dom  vol )
9772a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  D )  ->  ( F `  t )  e.  _V )
988feqmptd 5575 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  =  ( t  e.  D  |->  ( F `
 t ) ) )
9998, 7eqeltrrd 2358 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( t  e.  D  |->  ( F `  t
) )  e.  L ^1 )
10099ad3antrrr 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  D  |->  ( F `  t ) )  e.  L ^1 )
10194, 96, 97, 100iblss 19159 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  ( y (,) z )  |->  ( F `  t ) )  e.  L ^1 )
10273, 101itgcl 19138 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  S. ( y (,) z
) ( F `  t )  _d t  e.  CC )
103102abscld 11918 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  S. ( y (,) z ) ( F `  t )  _d t )  e.  RR )
104 iblmbf 19122 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  e.  ( y (,) z )  |->  ( F `  t ) )  e.  L ^1 
->  ( t  e.  ( y (,) z ) 
|->  ( F `  t
) )  e. MblFn )
105101, 104syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  ( y (,) z )  |->  ( F `  t ) )  e. MblFn )
106105, 73mbfmptcl 18992 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  ( y (,) z
) )  ->  ( F `  t )  e.  CC )
107106abscld 11918 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  /\  t  e.  ( y (,) z
) )  ->  ( abs `  ( F `  t ) )  e.  RR )
10873, 101iblabs 19183 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
t  e.  ( y (,) z )  |->  ( abs `  ( F `
 t ) ) )  e.  L ^1 )
109107, 108itgrecl 19152 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t  e.  RR )
110 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( e  e.  RR+  /\  d  e.  RR+ ) )  ->  e  e.  RR+ )
111110ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  e  e.  RR+ )
112111rpred 10390 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  e  e.  RR )
11373, 101itgabs 19189 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  S. ( y (,) z ) ( F `  t )  _d t )  <_  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t )
114 simplr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )
115 mblvol 18889 . . . . . . . . . . . . . . . . . 18  |-  ( ( y (,) z )  e.  dom  vol  ->  ( vol `  ( y (,) z ) )  =  ( vol * `  ( y (,) z
) ) )
11695, 115ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( vol `  ( y (,) z
) )  =  ( vol * `  (
y (,) z ) )
117 ioossre 10712 . . . . . . . . . . . . . . . . . . 19  |-  ( y (,) z )  C_  RR
118 ovolcl 18837 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y (,) z ) 
C_  RR  ->  ( vol
* `  ( y (,) z ) )  e. 
RR* )
119117, 118mp1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol * `  ( y (,) z ) )  e.  RR* )
12088simp1d 967 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  z  e.  RR )
12180simp1d 967 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  y  e.  RR )
122120, 121resubcld 9211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  -  y )  e.  RR )
123122rexrd 8881 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  -  y )  e.  RR* )
124 simprr 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  e.  RR+  /\  d  e.  RR+ ) )  ->  d  e.  RR+ )
125124ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  d  e.  RR+ )
126125rpxrd 10391 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  d  e.  RR* )
127 ioossicc 10735 . . . . . . . . . . . . . . . . . . . 20  |-  ( y (,) z )  C_  ( y [,] z
)
128 iccssre 10731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y [,] z
)  C_  RR )
129121, 120, 128syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
y [,] z ) 
C_  RR )
130 ovolss 18844 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y (,) z
)  C_  ( y [,] z )  /\  (
y [,] z ) 
C_  RR )  -> 
( vol * `  ( y (,) z
) )  <_  ( vol * `  ( y [,] z ) ) )
131127, 129, 130sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol * `  ( y (,) z ) )  <_  ( vol * `  ( y [,] z
) ) )
132 simprl3 1002 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  y  <_  z )
133 ovolicc 18882 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( vol * `  ( y [,] z ) )  =  ( z  -  y ) )
134121, 120, 132, 133syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol * `  ( y [,] z ) )  =  ( z  -  y ) )
135131, 134breqtrd 4047 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol * `  ( y (,) z ) )  <_  ( z  -  y ) )
136121, 120, 132abssubge0d 11914 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( z  -  y ) )  =  ( z  -  y
) )
137 simprr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( z  -  y ) )  < 
d )
138136, 137eqbrtrrd 4045 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
z  -  y )  <  d )
139119, 123, 126, 135, 138xrlelttrd 10491 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol * `  ( y (,) z ) )  <  d )
140116, 139syl5eqbr 4056 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( vol `  ( y (,) z ) )  < 
d )
14194, 140jca 518 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  (
( y (,) z
)  C_  D  /\  ( vol `  ( y (,) z ) )  <  d ) )
142 sseq1 3199 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( y (,) z )  ->  (
u  C_  D  <->  ( y (,) z )  C_  D
) )
143 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( y (,) z )  ->  ( vol `  u )  =  ( vol `  (
y (,) z ) ) )
144143breq1d 4033 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( y (,) z )  ->  (
( vol `  u
)  <  d  <->  ( vol `  ( y (,) z
) )  <  d
) )
145142, 144anbi12d 691 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( y (,) z )  ->  (
( u  C_  D  /\  ( vol `  u
)  <  d )  <->  ( ( y (,) z
)  C_  D  /\  ( vol `  ( y (,) z ) )  <  d ) ) )
146 fveq2 5525 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  t  ->  ( F `  w )  =  ( F `  t ) )
147146fveq2d 5529 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  t  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  t )
) )
148147cbvitgv 19131 . . . . . . . . . . . . . . . . . . 19  |-  S. u
( abs `  ( F `  w )
)  _d w  =  S. u ( abs `  ( F `  t
) )  _d t
149 itgeq1 19127 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( y (,) z )  ->  S. u ( abs `  ( F `  t )
)  _d t  =  S. ( y (,) z ) ( abs `  ( F `  t
) )  _d t )
150148, 149syl5eq 2327 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( y (,) z )  ->  S. u ( abs `  ( F `  w )
)  _d w  =  S. ( y (,) z ) ( abs `  ( F `  t
) )  _d t )
151150breq1d 4033 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( y (,) z )  ->  ( S. u ( abs `  ( F `  w )
)  _d w  < 
e  <->  S. ( y (,) z ) ( abs `  ( F `  t
) )  _d t  <  e ) )
152145, 151imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( y (,) z )  ->  (
( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  <->  ( (
( y (,) z
)  C_  D  /\  ( vol `  ( y (,) z ) )  <  d )  ->  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t  < 
e ) ) )
153152rspcv 2880 . . . . . . . . . . . . . . 15  |-  ( ( y (,) z )  e.  dom  vol  ->  ( A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  -> 
( ( ( y (,) z )  C_  D  /\  ( vol `  (
y (,) z ) )  <  d )  ->  S. ( y (,) z ) ( abs `  ( F `
 t ) )  _d t  <  e
) ) )
15496, 114, 141, 153syl3c 57 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  S. ( y (,) z
) ( abs `  ( F `  t )
)  _d t  < 
e )
155103, 109, 112, 113, 154lelttrd 8974 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  S. ( y (,) z ) ( F `  t )  _d t )  < 
e )
15671, 155eqbrtrd 4043 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( ( y  e.  ( A [,] B
)  /\  z  e.  ( A [,] B )  /\  y  <_  z
)  /\  ( abs `  ( z  -  y
) )  <  d
) )  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  <  e
)
157156expr 598 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B )  /\  y  <_  z
) )  ->  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
15826, 36, 39, 56, 157wlogle 9306 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  e.  RR+  /\  d  e.  RR+ )
)  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e ) )  /\  ( y  e.  ( A [,] B )  /\  z  e.  ( A [,] B ) ) )  ->  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
159158ralrimivva 2635 . . . . . . . . 9  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  d  e.  RR+ ) )  /\  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e ) )  ->  A. y  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
160159ex 423 . . . . . . . 8  |-  ( (
ph  /\  ( e  e.  RR+  /\  d  e.  RR+ ) )  ->  ( A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  ->  A. y  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( ( abs `  ( z  -  y ) )  <  d  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  <  e
) ) )
161160anassrs 629 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  ( F `  w
) )  _d w  <  e )  ->  A. y  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( ( abs `  ( z  -  y ) )  <  d  ->  ( abs `  ( ( G `
 z )  -  ( G `  y ) ) )  <  e
) ) )
162161reximdva 2655 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  D  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  ( F `  w )
)  _d w  < 
e )  ->  E. d  e.  RR+  A. y  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) )
16316, 162mpd 14 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. y  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
164 r19.12 2656 . . . . 5  |-  ( E. d  e.  RR+  A. y  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e )  ->  A. y  e.  ( A [,] B ) E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
165163, 164syl 15 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. y  e.  ( A [,] B
) E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
166165ralrimiva 2626 . . 3  |-  ( ph  ->  A. e  e.  RR+  A. y  e.  ( A [,] B ) E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
167 ralcom 2700 . . 3  |-  ( A. e  e.  RR+  A. y  e.  ( A [,] B
) E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e )  <->  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
168166, 167sylib 188 . 2  |-  ( ph  ->  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) )
169 ax-resscn 8794 . . . 4  |-  RR  C_  CC
17038, 169syl6ss 3191 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  CC )
171 ssid 3197 . . 3  |-  CC  C_  CC
172 elcncf2 18394 . . 3  |-  ( ( ( A [,] B
)  C_  CC  /\  CC  C_  CC )  ->  ( G  e.  ( ( A [,] B ) -cn-> CC )  <->  ( G :
( A [,] B
) --> CC  /\  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B ) ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) ) )
173170, 171, 172sylancl 643 . 2  |-  ( ph  ->  ( G  e.  ( ( A [,] B
) -cn-> CC )  <->  ( G : ( A [,] B ) --> CC  /\  A. y  e.  ( A [,] B ) A. e  e.  RR+  E. d  e.  RR+  A. z  e.  ( A [,] B
) ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( G `  z
)  -  ( G `
 y ) ) )  <  e ) ) ) )
1749, 168, 173mpbir2and 888 1  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   (,)cioo 10656   [,]cicc 10659   abscabs 11719   -cn->ccncf 18380   vol *covol 18822   volcvol 18823  MblFncmbf 18969   L ^1cibl 18972   S.citg 18973
This theorem is referenced by:  ftc2  19391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979  df-0p 19025
  Copyright terms: Public domain W3C validator