MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1cn Unicode version

Theorem ftc1cn 19390
Description: Strengthen the assumptions of ftc1 19389 to when the function  F is continuous on the entire interval  ( A ,  B ); in this case we can calculate  _D  G exactly. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1cn.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1cn.a  |-  ( ph  ->  A  e.  RR )
ftc1cn.b  |-  ( ph  ->  B  e.  RR )
ftc1cn.le  |-  ( ph  ->  A  <_  B )
ftc1cn.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
ftc1cn.i  |-  ( ph  ->  F  e.  L ^1 )
Assertion
Ref Expression
ftc1cn  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Distinct variable groups:    x, t, A    t, B, x    t, F, x    ph, t, x
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1cn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dvf 19257 . . . . 5  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
21a1i 10 . . . 4  |-  ( ph  ->  ( RR  _D  G
) : dom  ( RR  _D  G ) --> CC )
3 ffun 5391 . . . 4  |-  ( ( RR  _D  G ) : dom  ( RR 
_D  G ) --> CC 
->  Fun  ( RR  _D  G ) )
42, 3syl 15 . . 3  |-  ( ph  ->  Fun  ( RR  _D  G ) )
5 ax-resscn 8794 . . . . . . 7  |-  RR  C_  CC
65a1i 10 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
7 ftc1cn.g . . . . . . 7  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
8 ftc1cn.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 ftc1cn.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
10 ftc1cn.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
11 ssid 3197 . . . . . . . 8  |-  ( A (,) B )  C_  ( A (,) B )
1211a1i 10 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
13 ioossre 10712 . . . . . . . 8  |-  ( A (,) B )  C_  RR
1413a1i 10 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  RR )
15 ftc1cn.i . . . . . . 7  |-  ( ph  ->  F  e.  L ^1 )
16 ftc1cn.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
17 cncff 18397 . . . . . . . 8  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
1816, 17syl 15 . . . . . . 7  |-  ( ph  ->  F : ( A (,) B ) --> CC )
197, 8, 9, 10, 12, 14, 15, 18ftc1lem2 19383 . . . . . 6  |-  ( ph  ->  G : ( A [,] B ) --> CC )
20 iccssre 10731 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
218, 9, 20syl2anc 642 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
22 eqid 2283 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2322tgioo2 18309 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
246, 19, 21, 23, 22dvbssntr 19250 . . . . 5  |-  ( ph  ->  dom  ( RR  _D  G )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
25 iccntr 18326 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
268, 9, 25syl2anc 642 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2724, 26sseqtrd 3214 . . . 4  |-  ( ph  ->  dom  ( RR  _D  G )  C_  ( A (,) B ) )
288adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  A  e.  RR )
299adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  B  e.  RR )
3010adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  A  <_  B )
3111a1i 10 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  ( A (,) B ) )
3213a1i 10 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  RR )
3315adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  L ^1 )
34 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( A (,) B ) )
3513, 5sstri 3188 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  CC
36 ssid 3197 . . . . . . . . . . . 12  |-  CC  C_  CC
37 eqid 2283 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) )
3822cnfldtop 18293 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Top
3922cnfldtopon 18292 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4039toponunii 16670 . . . . . . . . . . . . . . . 16  |-  CC  =  U. ( TopOpen ` fld )
4140restid 13338 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
4238, 41ax-mp 8 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4342eqcomi 2287 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
4422, 37, 43cncfcn 18413 . . . . . . . . . . . 12  |-  ( ( ( A (,) B
)  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4535, 36, 44mp2an 653 . . . . . . . . . . 11  |-  ( ( A (,) B )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )
4616, 45syl6eleq 2373 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4746adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4835a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (,) B
)  C_  CC )
49 resttopon 16892 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( A (,) B )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( A (,) B
) )  e.  (TopOn `  ( A (,) B
) ) )
5039, 48, 49sylancr 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A (,) B ) )  e.  (TopOn `  ( A (,) B ) ) )
51 toponuni 16665 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  e.  (TopOn `  ( A (,) B ) )  -> 
( A (,) B
)  =  U. (
( TopOpen ` fld )t  ( A (,) B ) ) )
5250, 51syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  =  U. (
( TopOpen ` fld )t  ( A (,) B ) ) )
5352eleq2d 2350 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( A (,) B )  <-> 
y  e.  U. (
( TopOpen ` fld )t  ( A (,) B ) ) ) )
5453biimpa 470 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )
55 eqid 2283 . . . . . . . . . 10  |-  U. (
( TopOpen ` fld )t  ( A (,) B ) )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
5655cncnpi 17007 . . . . . . . . 9  |-  ( ( F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )  /\  y  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
5747, 54, 56syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
587, 28, 29, 30, 31, 32, 33, 34, 57, 23, 37, 22ftc1 19389 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y ( RR  _D  G ) ( F `  y ) )
59 vex 2791 . . . . . . . 8  |-  y  e. 
_V
60 fvex 5539 . . . . . . . 8  |-  ( F `
 y )  e. 
_V
6159, 60breldm 4883 . . . . . . 7  |-  ( y ( RR  _D  G
) ( F `  y )  ->  y  e.  dom  ( RR  _D  G ) )
6258, 61syl 15 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  dom  ( RR  _D  G
) )
6362ex 423 . . . . 5  |-  ( ph  ->  ( y  e.  ( A (,) B )  ->  y  e.  dom  ( RR  _D  G
) ) )
6463ssrdv 3185 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  dom  ( RR 
_D  G ) )
6527, 64eqssd 3196 . . 3  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
66 df-fn 5258 . . 3  |-  ( ( RR  _D  G )  Fn  ( A (,) B )  <->  ( Fun  ( RR  _D  G
)  /\  dom  ( RR 
_D  G )  =  ( A (,) B
) ) )
674, 65, 66sylanbrc 645 . 2  |-  ( ph  ->  ( RR  _D  G
)  Fn  ( A (,) B ) )
68 ffn 5389 . . 3  |-  ( F : ( A (,) B ) --> CC  ->  F  Fn  ( A (,) B ) )
6918, 68syl 15 . 2  |-  ( ph  ->  F  Fn  ( A (,) B ) )
704adantr 451 . . 3  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  Fun  ( RR 
_D  G ) )
71 funbrfv 5561 . . 3  |-  ( Fun  ( RR  _D  G
)  ->  ( y
( RR  _D  G
) ( F `  y )  ->  (
( RR  _D  G
) `  y )  =  ( F `  y ) ) )
7270, 58, 71sylc 56 . 2  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  y )  =  ( F `  y ) )
7367, 69, 72eqfnfvd 5625 1  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   U.cuni 3827   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ran crn 4690   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736    <_ cle 8868   (,)cioo 10656   [,]cicc 10659   ↾t crest 13325   TopOpenctopn 13326   topGenctg 13342  ℂfldccnfld 16377   Topctop 16631  TopOnctopon 16632   intcnt 16754    Cn ccn 16954    CnP ccnp 16955   -cn->ccncf 18380   L ^1cibl 18972   S.citg 18973    _D cdv 19213
This theorem is referenced by:  ftc2  19391  itgsubstlem  19395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979  df-0p 19025  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator