MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem2 Unicode version

Theorem ftc1lem2 19788
Description: Lemma for ftc1 19794. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L ^1 )
ftc1a.f  |-  ( ph  ->  F : D --> CC )
Assertion
Ref Expression
ftc1lem2  |-  ( ph  ->  G : ( A [,] B ) --> CC )
Distinct variable groups:    x, t, D    t, A, x    t, B, x    ph, t, x   
t, F, x
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1lem2
StepHypRef Expression
1 fvex 5683 . . . 4  |-  ( F `
 t )  e. 
_V
21a1i 11 . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) x
) )  ->  ( F `  t )  e.  _V )
3 ftc1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
43adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
54rexrd 9068 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
6 ftc1.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
7 elicc2 10908 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
86, 3, 7syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
98biimpa 471 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
109simp3d 971 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
11 iooss2 10885 . . . . . 6  |-  ( ( B  e.  RR*  /\  x  <_  B )  ->  ( A (,) x )  C_  ( A (,) B ) )
125, 10, 11syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  ( A (,) B ) )
13 ftc1.s . . . . . 6  |-  ( ph  ->  ( A (,) B
)  C_  D )
1413adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) B )  C_  D
)
1512, 14sstrd 3302 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  D
)
16 ioombl 19327 . . . . 5  |-  ( A (,) x )  e. 
dom  vol
1716a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  e.  dom  vol )
181a1i 11 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  D )  ->  ( F `  t )  e.  _V )
19 ftc1a.f . . . . . . 7  |-  ( ph  ->  F : D --> CC )
2019feqmptd 5719 . . . . . 6  |-  ( ph  ->  F  =  ( t  e.  D  |->  ( F `
 t ) ) )
21 ftc1.i . . . . . 6  |-  ( ph  ->  F  e.  L ^1 )
2220, 21eqeltrrd 2463 . . . . 5  |-  ( ph  ->  ( t  e.  D  |->  ( F `  t
) )  e.  L ^1 )
2322adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  D  |->  ( F `
 t ) )  e.  L ^1 )
2415, 17, 18, 23iblss 19564 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) x
)  |->  ( F `  t ) )  e.  L ^1 )
252, 24itgcl 19543 . 2  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  S. ( A (,) x ) ( F `  t )  _d t  e.  CC )
26 ftc1.g . 2  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
2725, 26fmptd 5833 1  |-  ( ph  ->  G : ( A [,] B ) --> CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   _Vcvv 2900    C_ wss 3264   class class class wbr 4154    e. cmpt 4208   dom cdm 4819   -->wf 5391   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   RR*cxr 9053    <_ cle 9055   (,)cioo 10849   [,]cicc 10852   volcvol 19228   L ^1cibl 19377   S.citg 19378
This theorem is referenced by:  ftc1a  19789  ftc1lem5  19792  ftc1lem6  19793  ftc1  19794  ftc1cn  19795  ftc1cnnc  25980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-ofr 6246  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-xadd 10644  df-ioo 10853  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-rlim 12211  df-sum 12408  df-xmet 16620  df-met 16621  df-ovol 19229  df-vol 19230  df-mbf 19380  df-itg1 19381  df-itg2 19382  df-ibl 19383  df-itg 19384
  Copyright terms: Public domain W3C validator