MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Unicode version

Theorem ftc1lem5 19485
Description: Lemma for ftc1 19487. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L ^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
ftc1.h  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
ftc1.e  |-  ( ph  ->  E  e.  RR+ )
ftc1.r  |-  ( ph  ->  R  e.  RR+ )
ftc1.fc  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
ftc1.x1  |-  ( ph  ->  X  e.  ( A [,] B ) )
ftc1.x2  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
Assertion
Ref Expression
ftc1lem5  |-  ( (
ph  /\  X  =/=  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
Distinct variable groups:    x, t,
y, z, C    t, D, x, y, z    y, G, z    t, A, x, y, z    t, B, x, y, z    t, X, x, z    t, E, y    y, H    ph, t, x, y, z    t, F, x, y, z    x, L, y, z    y, R
Allowed substitution hints:    R( x, z, t)    E( x, z)    G( x, t)    H( x, z, t)    J( x, y, z, t)    K( x, y, z, t)    L( t)    X( y)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 ftc1.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
3 iccssre 10820 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3syl2anc 642 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  RR )
5 ftc1.x1 . . . . 5  |-  ( ph  ->  X  e.  ( A [,] B ) )
64, 5sseldd 3257 . . . 4  |-  ( ph  ->  X  e.  RR )
7 ioossicc 10824 . . . . . 6  |-  ( A (,) B )  C_  ( A [,] B )
8 ftc1.c . . . . . 6  |-  ( ph  ->  C  e.  ( A (,) B ) )
97, 8sseldi 3254 . . . . 5  |-  ( ph  ->  C  e.  ( A [,] B ) )
104, 9sseldd 3257 . . . 4  |-  ( ph  ->  C  e.  RR )
116, 10lttri2d 9045 . . 3  |-  ( ph  ->  ( X  =/=  C  <->  ( X  <  C  \/  C  <  X ) ) )
1211biimpa 470 . 2  |-  ( (
ph  /\  X  =/=  C )  ->  ( X  <  C  \/  C  < 
X ) )
135adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  X  <  C )  ->  X  e.  ( A [,] B ) )
146adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  C )  ->  X  e.  RR )
15 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  C )  ->  X  <  C )
1614, 15ltned 9042 . . . . . . . . 9  |-  ( (
ph  /\  X  <  C )  ->  X  =/=  C )
17 eldifsn 3825 . . . . . . . . 9  |-  ( X  e.  ( ( A [,] B )  \  { C } )  <->  ( X  e.  ( A [,] B
)  /\  X  =/=  C ) )
1813, 16, 17sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  X  e.  ( ( A [,] B )  \  { C } ) )
19 fveq2 5605 . . . . . . . . . . 11  |-  ( z  =  X  ->  ( G `  z )  =  ( G `  X ) )
2019oveq1d 5957 . . . . . . . . . 10  |-  ( z  =  X  ->  (
( G `  z
)  -  ( G `
 C ) )  =  ( ( G `
 X )  -  ( G `  C ) ) )
21 oveq1 5949 . . . . . . . . . 10  |-  ( z  =  X  ->  (
z  -  C )  =  ( X  -  C ) )
2220, 21oveq12d 5960 . . . . . . . . 9  |-  ( z  =  X  ->  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  =  ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) ) )
23 ftc1.h . . . . . . . . 9  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
24 ovex 5967 . . . . . . . . 9  |-  ( ( ( G `  X
)  -  ( G `
 C ) )  /  ( X  -  C ) )  e. 
_V
2522, 23, 24fvmpt 5682 . . . . . . . 8  |-  ( X  e.  ( ( A [,] B )  \  { C } )  -> 
( H `  X
)  =  ( ( ( G `  X
)  -  ( G `
 C ) )  /  ( X  -  C ) ) )
2618, 25syl 15 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( H `  X )  =  ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) ) )
27 ftc1.g . . . . . . . . . . . 12  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
28 ftc1.le . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  B )
29 ftc1.s . . . . . . . . . . . 12  |-  ( ph  ->  ( A (,) B
)  C_  D )
30 ftc1.d . . . . . . . . . . . 12  |-  ( ph  ->  D  C_  RR )
31 ftc1.i . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  L ^1 )
32 ftc1.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
33 ftc1.j . . . . . . . . . . . . 13  |-  J  =  ( Lt  RR )
34 ftc1.k . . . . . . . . . . . . 13  |-  K  =  ( Lt  D )
35 ftc1.l . . . . . . . . . . . . 13  |-  L  =  ( TopOpen ` fld )
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 19483 . . . . . . . . . . . 12  |-  ( ph  ->  F : D --> CC )
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 19481 . . . . . . . . . . 11  |-  ( ph  ->  G : ( A [,] B ) --> CC )
3837, 5ffvelrnd 5746 . . . . . . . . . 10  |-  ( ph  ->  ( G `  X
)  e.  CC )
3937, 9ffvelrnd 5746 . . . . . . . . . 10  |-  ( ph  ->  ( G `  C
)  e.  CC )
4038, 39subcld 9244 . . . . . . . . 9  |-  ( ph  ->  ( ( G `  X )  -  ( G `  C )
)  e.  CC )
4140adantr 451 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( ( G `  X )  -  ( G `  C ) )  e.  CC )
426recnd 8948 . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
4310recnd 8948 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
4442, 43subcld 9244 . . . . . . . . 9  |-  ( ph  ->  ( X  -  C
)  e.  CC )
4544adantr 451 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( X  -  C )  e.  CC )
46 subeq0 9160 . . . . . . . . . . . 12  |-  ( ( X  e.  CC  /\  C  e.  CC )  ->  ( ( X  -  C )  =  0  <-> 
X  =  C ) )
4742, 43, 46syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  -  C )  =  0  <-> 
X  =  C ) )
4847necon3bid 2556 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  -  C )  =/=  0  <->  X  =/=  C ) )
4948biimpar 471 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  C )  ->  ( X  -  C )  =/=  0
)
5016, 49syldan 456 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( X  -  C )  =/=  0
)
5141, 45, 50div2negd 9638 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( -u (
( G `  X
)  -  ( G `
 C ) )  /  -u ( X  -  C ) )  =  ( ( ( G `
 X )  -  ( G `  C ) )  /  ( X  -  C ) ) )
5238, 39negsubdi2d 9260 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( G `
 X )  -  ( G `  C ) )  =  ( ( G `  C )  -  ( G `  X ) ) )
5342, 43negsubdi2d 9260 . . . . . . . . 9  |-  ( ph  -> 
-u ( X  -  C )  =  ( C  -  X ) )
5452, 53oveq12d 5960 . . . . . . . 8  |-  ( ph  ->  ( -u ( ( G `  X )  -  ( G `  C ) )  /  -u ( X  -  C
) )  =  ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) ) )
5554adantr 451 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( -u (
( G `  X
)  -  ( G `
 C ) )  /  -u ( X  -  C ) )  =  ( ( ( G `
 C )  -  ( G `  X ) )  /  ( C  -  X ) ) )
5626, 51, 553eqtr2d 2396 . . . . . 6  |-  ( (
ph  /\  X  <  C )  ->  ( H `  X )  =  ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) ) )
5756oveq1d 5957 . . . . 5  |-  ( (
ph  /\  X  <  C )  ->  ( ( H `  X )  -  ( F `  C ) )  =  ( ( ( ( G `  C )  -  ( G `  X ) )  / 
( C  -  X
) )  -  ( F `  C )
) )
5857fveq2d 5609 . . . 4  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  =  ( abs `  ( ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) )  -  ( F `  C ) ) ) )
59 ftc1.e . . . . 5  |-  ( ph  ->  E  e.  RR+ )
60 ftc1.r . . . . 5  |-  ( ph  ->  R  e.  RR+ )
61 ftc1.fc . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
62 ftc1.x2 . . . . 5  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
6343subidd 9232 . . . . . . . 8  |-  ( ph  ->  ( C  -  C
)  =  0 )
6463fveq2d 5609 . . . . . . 7  |-  ( ph  ->  ( abs `  ( C  -  C )
)  =  ( abs `  0 ) )
65 abs0 11860 . . . . . . 7  |-  ( abs `  0 )  =  0
6664, 65syl6eq 2406 . . . . . 6  |-  ( ph  ->  ( abs `  ( C  -  C )
)  =  0 )
6760rpgt0d 10482 . . . . . 6  |-  ( ph  ->  0  <  R )
6866, 67eqbrtrd 4122 . . . . 5  |-  ( ph  ->  ( abs `  ( C  -  C )
)  <  R )
6927, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 59, 60, 61, 5, 62, 9, 68ftc1lem4 19484 . . . 4  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( ( ( G `  C )  -  ( G `  X ) )  / 
( C  -  X
) )  -  ( F `  C )
) )  <  E
)
7058, 69eqbrtrd 4122 . . 3  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
715adantr 451 . . . . . . . 8  |-  ( (
ph  /\  C  <  X )  ->  X  e.  ( A [,] B ) )
7210adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  C  <  X )  ->  C  e.  RR )
73 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  C  <  X )  ->  C  <  X )
7472, 73gtned 9041 . . . . . . . 8  |-  ( (
ph  /\  C  <  X )  ->  X  =/=  C )
7571, 74, 17sylanbrc 645 . . . . . . 7  |-  ( (
ph  /\  C  <  X )  ->  X  e.  ( ( A [,] B )  \  { C } ) )
7675, 25syl 15 . . . . . 6  |-  ( (
ph  /\  C  <  X )  ->  ( H `  X )  =  ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) ) )
7776oveq1d 5957 . . . . 5  |-  ( (
ph  /\  C  <  X )  ->  ( ( H `  X )  -  ( F `  C ) )  =  ( ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) )  -  ( F `  C )
) )
7877fveq2d 5609 . . . 4  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  =  ( abs `  ( ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) )  -  ( F `  C ) ) ) )
7927, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 59, 60, 61, 9, 68, 5, 62ftc1lem4 19484 . . . 4  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) )  -  ( F `  C )
) )  <  E
)
8078, 79eqbrtrd 4122 . . 3  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
8170, 80jaodan 760 . 2  |-  ( (
ph  /\  ( X  <  C  \/  C  < 
X ) )  -> 
( abs `  (
( H `  X
)  -  ( F `
 C ) ) )  <  E )
8212, 81syldan 456 1  |-  ( (
ph  /\  X  =/=  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521    \ cdif 3225    C_ wss 3228   {csn 3716   class class class wbr 4102    e. cmpt 4156   ` cfv 5334  (class class class)co 5942   CCcc 8822   RRcr 8823   0cc0 8824    < clt 8954    <_ cle 8955    - cmin 9124   -ucneg 9125    / cdiv 9510   RR+crp 10443   (,)cioo 10745   [,]cicc 10748   abscabs 11809   ↾t crest 13418   TopOpenctopn 13419  ℂfldccnfld 16476    CnP ccnp 17055   L ^1cibl 19070   S.citg 19071
This theorem is referenced by:  ftc1lem6  19486
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cc 8148  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902  ax-addf 8903  ax-mulf 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-disj 4073  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-of 6162  df-ofr 6163  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-2o 6564  df-oadd 6567  df-omul 6568  df-er 6744  df-map 6859  df-pm 6860  df-ixp 6903  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-fi 7252  df-sup 7281  df-oi 7312  df-card 7659  df-acn 7662  df-cda 7881  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-uz 10320  df-q 10406  df-rp 10444  df-xneg 10541  df-xadd 10542  df-xmul 10543  df-ioo 10749  df-ioc 10750  df-ico 10751  df-icc 10752  df-fz 10872  df-fzo 10960  df-fl 11014  df-mod 11063  df-seq 11136  df-exp 11195  df-hash 11428  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-clim 12052  df-rlim 12053  df-sum 12250  df-struct 13241  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-plusg 13312  df-mulr 13313  df-starv 13314  df-sca 13315  df-vsca 13316  df-tset 13318  df-ple 13319  df-ds 13321  df-unif 13322  df-hom 13323  df-cco 13324  df-rest 13420  df-topn 13421  df-topgen 13437  df-pt 13438  df-prds 13441  df-xrs 13496  df-0g 13497  df-gsum 13498  df-qtop 13503  df-imas 13504  df-xps 13506  df-mre 13581  df-mrc 13582  df-acs 13584  df-mnd 14460  df-submnd 14509  df-mulg 14585  df-cntz 14886  df-cmn 15184  df-xmet 16469  df-met 16470  df-bl 16471  df-mopn 16472  df-cnfld 16477  df-top 16736  df-bases 16738  df-topon 16739  df-topsp 16740  df-cn 17057  df-cnp 17058  df-cmp 17214  df-tx 17357  df-hmeo 17546  df-xms 17981  df-ms 17982  df-tms 17983  df-cncf 18479  df-ovol 18922  df-vol 18923  df-mbf 19073  df-itg1 19074  df-itg2 19075  df-ibl 19076  df-itg 19077  df-0p 19123
  Copyright terms: Public domain W3C validator