MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthepi Unicode version

Theorem fthepi 14045
Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b  |-  B  =  ( Base `  C
)
fthmon.h  |-  H  =  (  Hom  `  C
)
fthmon.f  |-  ( ph  ->  F ( C Faith  D
) G )
fthmon.x  |-  ( ph  ->  X  e.  B )
fthmon.y  |-  ( ph  ->  Y  e.  B )
fthmon.r  |-  ( ph  ->  R  e.  ( X H Y ) )
fthepi.e  |-  E  =  (Epi `  C )
fthepi.p  |-  P  =  (Epi `  D )
fthepi.1  |-  ( ph  ->  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) P ( F `  Y ) ) )
Assertion
Ref Expression
fthepi  |-  ( ph  ->  R  e.  ( X E Y ) )

Proof of Theorem fthepi
StepHypRef Expression
1 eqid 2380 . . . 4  |-  (oppCat `  C )  =  (oppCat `  C )
2 fthmon.b . . . 4  |-  B  =  ( Base `  C
)
31, 2oppcbas 13864 . . 3  |-  B  =  ( Base `  (oppCat `  C ) )
4 eqid 2380 . . 3  |-  (  Hom  `  (oppCat `  C )
)  =  (  Hom  `  (oppCat `  C )
)
5 eqid 2380 . . . 4  |-  (oppCat `  D )  =  (oppCat `  D )
6 fthmon.f . . . 4  |-  ( ph  ->  F ( C Faith  D
) G )
71, 5, 6fthoppc 14040 . . 3  |-  ( ph  ->  F ( (oppCat `  C ) Faith  (oppCat `  D
) )tpos  G )
8 fthmon.y . . 3  |-  ( ph  ->  Y  e.  B )
9 fthmon.x . . 3  |-  ( ph  ->  X  e.  B )
10 fthmon.r . . . 4  |-  ( ph  ->  R  e.  ( X H Y ) )
11 fthmon.h . . . . 5  |-  H  =  (  Hom  `  C
)
1211, 1oppchom 13861 . . . 4  |-  ( Y (  Hom  `  (oppCat `  C ) ) X )  =  ( X H Y )
1310, 12syl6eleqr 2471 . . 3  |-  ( ph  ->  R  e.  ( Y (  Hom  `  (oppCat `  C ) ) X ) )
14 eqid 2380 . . 3  |-  (Mono `  (oppCat `  C ) )  =  (Mono `  (oppCat `  C ) )
15 eqid 2380 . . 3  |-  (Mono `  (oppCat `  D ) )  =  (Mono `  (oppCat `  D ) )
16 ovtpos 6423 . . . . . 6  |-  ( Ytpos 
G X )  =  ( X G Y )
1716fveq1i 5662 . . . . 5  |-  ( ( Ytpos  G X ) `
 R )  =  ( ( X G Y ) `  R
)
18 fthepi.1 . . . . 5  |-  ( ph  ->  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) P ( F `  Y ) ) )
1917, 18syl5eqel 2464 . . . 4  |-  ( ph  ->  ( ( Ytpos  G X ) `  R
)  e.  ( ( F `  X ) P ( F `  Y ) ) )
20 fthfunc 14024 . . . . . . . . . 10  |-  ( C Faith 
D )  C_  ( C  Func  D )
2120ssbri 4188 . . . . . . . . 9  |-  ( F ( C Faith  D ) G  ->  F ( C  Func  D ) G )
226, 21syl 16 . . . . . . . 8  |-  ( ph  ->  F ( C  Func  D ) G )
23 df-br 4147 . . . . . . . 8  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
2422, 23sylib 189 . . . . . . 7  |-  ( ph  -> 
<. F ,  G >.  e.  ( C  Func  D
) )
25 funcrcl 13980 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
2624, 25syl 16 . . . . . 6  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
2726simprd 450 . . . . 5  |-  ( ph  ->  D  e.  Cat )
28 fthepi.p . . . . 5  |-  P  =  (Epi `  D )
295, 27, 15, 28oppcmon 13884 . . . 4  |-  ( ph  ->  ( ( F `  Y ) (Mono `  (oppCat `  D ) ) ( F `  X
) )  =  ( ( F `  X
) P ( F `
 Y ) ) )
3019, 29eleqtrrd 2457 . . 3  |-  ( ph  ->  ( ( Ytpos  G X ) `  R
)  e.  ( ( F `  Y ) (Mono `  (oppCat `  D
) ) ( F `
 X ) ) )
313, 4, 7, 8, 9, 13, 14, 15, 30fthmon 14044 . 2  |-  ( ph  ->  R  e.  ( Y (Mono `  (oppCat `  C
) ) X ) )
3226simpld 446 . . 3  |-  ( ph  ->  C  e.  Cat )
33 fthepi.e . . 3  |-  E  =  (Epi `  C )
341, 32, 14, 33oppcmon 13884 . 2  |-  ( ph  ->  ( Y (Mono `  (oppCat `  C ) ) X )  =  ( X E Y ) )
3531, 34eleqtrd 2456 1  |-  ( ph  ->  R  e.  ( X E Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   <.cop 3753   class class class wbr 4146   ` cfv 5387  (class class class)co 6013  tpos ctpos 6407   Basecbs 13389    Hom chom 13460   Catccat 13809  oppCatcoppc 13857  Monocmon 13874  Epicepi 13875    Func cfunc 13971   Faith cfth 14020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-map 6949  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-hom 13473  df-cco 13474  df-cat 13813  df-cid 13814  df-oppc 13858  df-mon 13876  df-epi 13877  df-func 13975  df-fth 14022
  Copyright terms: Public domain W3C validator