MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthi Unicode version

Theorem fthi 13808
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
isfth.h  |-  H  =  (  Hom  `  C
)
isfth.j  |-  J  =  (  Hom  `  D
)
fthf1.f  |-  ( ph  ->  F ( C Faith  D
) G )
fthf1.x  |-  ( ph  ->  X  e.  B )
fthf1.y  |-  ( ph  ->  Y  e.  B )
fthi.r  |-  ( ph  ->  R  e.  ( X H Y ) )
fthi.s  |-  ( ph  ->  S  e.  ( X H Y ) )
Assertion
Ref Expression
fthi  |-  ( ph  ->  ( ( ( X G Y ) `  R )  =  ( ( X G Y ) `  S )  <-> 
R  =  S ) )

Proof of Theorem fthi
StepHypRef Expression
1 isfth.b . . 3  |-  B  =  ( Base `  C
)
2 isfth.h . . 3  |-  H  =  (  Hom  `  C
)
3 isfth.j . . 3  |-  J  =  (  Hom  `  D
)
4 fthf1.f . . 3  |-  ( ph  ->  F ( C Faith  D
) G )
5 fthf1.x . . 3  |-  ( ph  ->  X  e.  B )
6 fthf1.y . . 3  |-  ( ph  ->  Y  e.  B )
71, 2, 3, 4, 5, 6fthf1 13807 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-> ( ( F `  X
) J ( F `
 Y ) ) )
8 fthi.r . 2  |-  ( ph  ->  R  e.  ( X H Y ) )
9 fthi.s . 2  |-  ( ph  ->  S  e.  ( X H Y ) )
10 f1fveq 5802 . 2  |-  ( ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F `  X
) J ( F `
 Y ) )  /\  ( R  e.  ( X H Y )  /\  S  e.  ( X H Y ) ) )  -> 
( ( ( X G Y ) `  R )  =  ( ( X G Y ) `  S )  <-> 
R  =  S ) )
117, 8, 9, 10syl12anc 1180 1  |-  ( ph  ->  ( ( ( X G Y ) `  R )  =  ( ( X G Y ) `  S )  <-> 
R  =  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   class class class wbr 4039   -1-1->wf1 5268   ` cfv 5271  (class class class)co 5874   Basecbs 13164    Hom chom 13235   Faith cfth 13793
This theorem is referenced by:  fthsect  13815  fthmon  13817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-ixp 6834  df-func 13748  df-fth 13795
  Copyright terms: Public domain W3C validator