MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthres2 Unicode version

Theorem fthres2 13899
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017.)
Assertion
Ref Expression
fthres2  |-  ( R  e.  (Subcat `  D
)  ->  ( C Faith  ( D  |`cat  R ) )  C_  ( C Faith  D ) )

Proof of Theorem fthres2
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfth 13876 . . 3  |-  Rel  ( C Faith  ( D  |`cat  R )
)
21a1i 10 . 2  |-  ( R  e.  (Subcat `  D
)  ->  Rel  ( C Faith 
( D  |`cat  R )
) )
3 funcres2 13865 . . . . . 6  |-  ( R  e.  (Subcat `  D
)  ->  ( C  Func  ( D  |`cat  R )
)  C_  ( C  Func  D ) )
43ssbrd 4143 . . . . 5  |-  ( R  e.  (Subcat `  D
)  ->  ( f
( C  Func  ( D  |`cat  R ) ) g  ->  f ( C 
Func  D ) g ) )
54anim1d 547 . . . 4  |-  ( R  e.  (Subcat `  D
)  ->  ( (
f ( C  Func  ( D  |`cat  R ) ) g  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) )  ->  ( f
( C  Func  D
) g  /\  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) ) ) )
6 eqid 2358 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
76isfth 13881 . . . 4  |-  ( f ( C Faith  ( D  |`cat 
R ) ) g  <-> 
( f ( C 
Func  ( D  |`cat  R
) ) g  /\  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) ) )
86isfth 13881 . . . 4  |-  ( f ( C Faith  D ) g  <->  ( f ( C  Func  D )
g  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) Fun  `' (
x g y ) ) )
95, 7, 83imtr4g 261 . . 3  |-  ( R  e.  (Subcat `  D
)  ->  ( f
( C Faith  ( D  |`cat  R ) ) g  -> 
f ( C Faith  D
) g ) )
10 df-br 4103 . . 3  |-  ( f ( C Faith  ( D  |`cat 
R ) ) g  <->  <. f ,  g >.  e.  ( C Faith  ( D  |`cat 
R ) ) )
11 df-br 4103 . . 3  |-  ( f ( C Faith  D ) g  <->  <. f ,  g
>.  e.  ( C Faith  D
) )
129, 10, 113imtr3g 260 . 2  |-  ( R  e.  (Subcat `  D
)  ->  ( <. f ,  g >.  e.  ( C Faith  ( D  |`cat  R
) )  ->  <. f ,  g >.  e.  ( C Faith  D ) ) )
132, 12relssdv 4858 1  |-  ( R  e.  (Subcat `  D
)  ->  ( C Faith  ( D  |`cat  R ) )  C_  ( C Faith  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1710   A.wral 2619    C_ wss 3228   <.cop 3719   class class class wbr 4102   `'ccnv 4767   Rel wrel 4773   Fun wfun 5328   ` cfv 5334  (class class class)co 5942   Basecbs 13239    |`cat cresc 13778  Subcatcsubc 13779    Func cfunc 13821   Faith cfth 13870
This theorem is referenced by:  rescfth  13904
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-map 6859  df-pm 6860  df-ixp 6903  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-hom 13323  df-cco 13324  df-cat 13663  df-cid 13664  df-homf 13665  df-ssc 13780  df-resc 13781  df-subc 13782  df-func 13825  df-fth 13872
  Copyright terms: Public domain W3C validator