MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftp Unicode version

Theorem ftp 5857
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a  |-  A  e. 
_V
ftp.b  |-  B  e. 
_V
ftp.c  |-  C  e. 
_V
ftp.d  |-  X  e. 
_V
ftp.e  |-  Y  e. 
_V
ftp.f  |-  Z  e. 
_V
ftp.g  |-  A  =/= 
B
ftp.h  |-  A  =/= 
C
ftp.i  |-  B  =/= 
C
Assertion
Ref Expression
ftp  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3  |-  A  e. 
_V
2 ftp.b . . 3  |-  B  e. 
_V
3 ftp.c . . 3  |-  C  e. 
_V
41, 2, 33pm3.2i 1132 . 2  |-  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V )
5 ftp.d . . 3  |-  X  e. 
_V
6 ftp.e . . 3  |-  Y  e. 
_V
7 ftp.f . . 3  |-  Z  e. 
_V
85, 6, 73pm3.2i 1132 . 2  |-  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e. 
_V )
9 ftp.g . . 3  |-  A  =/= 
B
10 ftp.h . . 3  |-  A  =/= 
C
11 ftp.i . . 3  |-  B  =/= 
C
129, 10, 113pm3.2i 1132 . 2  |-  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )
13 ftpg 5856 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  _V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
)
144, 8, 12, 13mp3an 1279 1  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
Colors of variables: wff set class
Syntax hints:    /\ w3a 936    e. wcel 1717    =/= wne 2551   _Vcvv 2900   {ctp 3760   <.cop 3761   -->wf 5391
This theorem is referenced by:  wlkntrllem3  21416  constr3trllem1  21486  rabren3dioph  26568
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-br 4155  df-opab 4209  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402
  Copyright terms: Public domain W3C validator