MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucass Unicode version

Theorem fucass 13842
Description: Associativity of natural transformation composition. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucass.q  |-  Q  =  ( C FuncCat  D )
fucass.n  |-  N  =  ( C Nat  D )
fucass.x  |-  .xb  =  (comp `  Q )
fucass.r  |-  ( ph  ->  R  e.  ( F N G ) )
fucass.s  |-  ( ph  ->  S  e.  ( G N H ) )
fucass.t  |-  ( ph  ->  T  e.  ( H N K ) )
Assertion
Ref Expression
fucass  |-  ( ph  ->  ( ( T (
<. G ,  H >.  .xb 
K ) S ) ( <. F ,  G >. 
.xb  K ) R )  =  ( T ( <. F ,  H >. 
.xb  K ) ( S ( <. F ,  G >.  .xb  H ) R ) ) )

Proof of Theorem fucass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
2 eqid 2283 . . . . 5  |-  (  Hom  `  D )  =  (  Hom  `  D )
3 eqid 2283 . . . . 5  |-  (comp `  D )  =  (comp `  D )
4 fucass.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  ( F N G ) )
5 fucass.n . . . . . . . . . . 11  |-  N  =  ( C Nat  D )
65natrcl 13824 . . . . . . . . . 10  |-  ( R  e.  ( F N G )  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D
) ) )
74, 6syl 15 . . . . . . . . 9  |-  ( ph  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D ) ) )
87simpld 445 . . . . . . . 8  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
9 funcrcl 13737 . . . . . . . 8  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
108, 9syl 15 . . . . . . 7  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
1110simprd 449 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
1211adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
13 eqid 2283 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  C )
14 relfunc 13736 . . . . . . . 8  |-  Rel  ( C  Func  D )
15 1st2ndbr 6169 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1614, 8, 15sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1713, 1, 16funcf1 13740 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( Base `  D ) )
1817ffvelrnda 5665 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
197simprd 449 . . . . . . . 8  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
20 1st2ndbr 6169 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
2114, 19, 20sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
2213, 1, 21funcf1 13740 . . . . . 6  |-  ( ph  ->  ( 1st `  G
) : ( Base `  C ) --> ( Base `  D ) )
2322ffvelrnda 5665 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  G ) `  x )  e.  (
Base `  D )
)
24 fucass.t . . . . . . . . . 10  |-  ( ph  ->  T  e.  ( H N K ) )
255natrcl 13824 . . . . . . . . . 10  |-  ( T  e.  ( H N K )  ->  ( H  e.  ( C  Func  D )  /\  K  e.  ( C  Func  D
) ) )
2624, 25syl 15 . . . . . . . . 9  |-  ( ph  ->  ( H  e.  ( C  Func  D )  /\  K  e.  ( C  Func  D ) ) )
2726simpld 445 . . . . . . . 8  |-  ( ph  ->  H  e.  ( C 
Func  D ) )
28 1st2ndbr 6169 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  H  e.  ( C  Func  D
) )  ->  ( 1st `  H ) ( C  Func  D )
( 2nd `  H
) )
2914, 27, 28sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  H
) ( C  Func  D ) ( 2nd `  H
) )
3013, 1, 29funcf1 13740 . . . . . 6  |-  ( ph  ->  ( 1st `  H
) : ( Base `  C ) --> ( Base `  D ) )
3130ffvelrnda 5665 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  H ) `  x )  e.  (
Base `  D )
)
325, 4nat1st2nd 13825 . . . . . . 7  |-  ( ph  ->  R  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
3332adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  R  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
34 simpr 447 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
355, 33, 13, 2, 34natcl 13827 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( R `  x )  e.  ( ( ( 1st `  F
) `  x )
(  Hom  `  D ) ( ( 1st `  G
) `  x )
) )
36 fucass.s . . . . . . . 8  |-  ( ph  ->  S  e.  ( G N H ) )
375, 36nat1st2nd 13825 . . . . . . 7  |-  ( ph  ->  S  e.  ( <.
( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
3837adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  S  e.  ( <. ( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
395, 38, 13, 2, 34natcl 13827 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( S `  x )  e.  ( ( ( 1st `  G
) `  x )
(  Hom  `  D ) ( ( 1st `  H
) `  x )
) )
4026simprd 449 . . . . . . . 8  |-  ( ph  ->  K  e.  ( C 
Func  D ) )
41 1st2ndbr 6169 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  K  e.  ( C  Func  D
) )  ->  ( 1st `  K ) ( C  Func  D )
( 2nd `  K
) )
4214, 40, 41sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  K
) ( C  Func  D ) ( 2nd `  K
) )
4313, 1, 42funcf1 13740 . . . . . 6  |-  ( ph  ->  ( 1st `  K
) : ( Base `  C ) --> ( Base `  D ) )
4443ffvelrnda 5665 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  K ) `  x )  e.  (
Base `  D )
)
455, 24nat1st2nd 13825 . . . . . . 7  |-  ( ph  ->  T  e.  ( <.
( 1st `  H
) ,  ( 2nd `  H ) >. N <. ( 1st `  K ) ,  ( 2nd `  K
) >. ) )
4645adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  T  e.  ( <. ( 1st `  H
) ,  ( 2nd `  H ) >. N <. ( 1st `  K ) ,  ( 2nd `  K
) >. ) )
475, 46, 13, 2, 34natcl 13827 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( T `  x )  e.  ( ( ( 1st `  H
) `  x )
(  Hom  `  D ) ( ( 1st `  K
) `  x )
) )
481, 2, 3, 12, 18, 23, 31, 35, 39, 44, 47catass 13588 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
( T `  x
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( R `  x ) )  =  ( ( T `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
49 fucass.q . . . . . 6  |-  Q  =  ( C FuncCat  D )
50 fucass.x . . . . . 6  |-  .xb  =  (comp `  Q )
5136adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  S  e.  ( G N H ) )
5224adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  T  e.  ( H N K ) )
5349, 5, 13, 3, 50, 51, 52, 34fuccoval 13837 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( T ( <. G ,  H >.  .xb  K ) S ) `  x )  =  ( ( T `
 x ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( S `
 x ) ) )
5453oveq1d 5873 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
( T ( <. G ,  H >.  .xb 
K ) S ) `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( R `
 x ) )  =  ( ( ( T `  x ) ( <. ( ( 1st `  G ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( S `  x ) ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( R `
 x ) ) )
554adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  R  e.  ( F N G ) )
5649, 5, 13, 3, 50, 55, 51, 34fuccoval 13837 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x )  =  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) )
5756oveq2d 5874 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( T `  x )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( ( S ( <. F ,  G >. 
.xb  H ) R ) `  x ) )  =  ( ( T `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) ) )
5848, 54, 573eqtr4d 2325 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
( T ( <. G ,  H >.  .xb 
K ) S ) `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( R `
 x ) )  =  ( ( T `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) )
5958mpteq2dva 4106 . 2  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  ( ( ( T ( <. G ,  H >. 
.xb  K ) S ) `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( R `  x ) ) )  =  ( x  e.  ( Base `  C
)  |->  ( ( T `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) ) )
6049, 5, 50, 36, 24fuccocl 13838 . . 3  |-  ( ph  ->  ( T ( <. G ,  H >.  .xb 
K ) S )  e.  ( G N K ) )
6149, 5, 13, 3, 50, 4, 60fucco 13836 . 2  |-  ( ph  ->  ( ( T (
<. G ,  H >.  .xb 
K ) S ) ( <. F ,  G >. 
.xb  K ) R )  =  ( x  e.  ( Base `  C
)  |->  ( ( ( T ( <. G ,  H >.  .xb  K ) S ) `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( R `  x ) ) ) )
6249, 5, 50, 4, 36fuccocl 13838 . . 3  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  ( F N H ) )
6349, 5, 13, 3, 50, 62, 24fucco 13836 . 2  |-  ( ph  ->  ( T ( <. F ,  H >.  .xb 
K ) ( S ( <. F ,  G >. 
.xb  H ) R ) )  =  ( x  e.  ( Base `  C )  |->  ( ( T `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( ( S ( <. F ,  G >. 
.xb  H ) R ) `  x ) ) ) )
6459, 61, 633eqtr4d 2325 1  |-  ( ph  ->  ( ( T (
<. G ,  H >.  .xb 
K ) S ) ( <. F ,  G >. 
.xb  K ) R )  =  ( T ( <. F ,  H >. 
.xb  K ) ( S ( <. F ,  G >.  .xb  H ) R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023    e. cmpt 4077   Rel wrel 4694   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566    Func cfunc 13728   Nat cnat 13815   FuncCat cfuc 13816
This theorem is referenced by:  fuccatid  13843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-hom 13232  df-cco 13233  df-cat 13570  df-func 13732  df-nat 13817  df-fuc 13818
  Copyright terms: Public domain W3C validator