MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucass Unicode version

Theorem fucass 14052
Description: Associativity of natural transformation composition. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucass.q  |-  Q  =  ( C FuncCat  D )
fucass.n  |-  N  =  ( C Nat  D )
fucass.x  |-  .xb  =  (comp `  Q )
fucass.r  |-  ( ph  ->  R  e.  ( F N G ) )
fucass.s  |-  ( ph  ->  S  e.  ( G N H ) )
fucass.t  |-  ( ph  ->  T  e.  ( H N K ) )
Assertion
Ref Expression
fucass  |-  ( ph  ->  ( ( T (
<. G ,  H >.  .xb 
K ) S ) ( <. F ,  G >. 
.xb  K ) R )  =  ( T ( <. F ,  H >. 
.xb  K ) ( S ( <. F ,  G >.  .xb  H ) R ) ) )

Proof of Theorem fucass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2366 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
2 eqid 2366 . . . . 5  |-  (  Hom  `  D )  =  (  Hom  `  D )
3 eqid 2366 . . . . 5  |-  (comp `  D )  =  (comp `  D )
4 fucass.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  ( F N G ) )
5 fucass.n . . . . . . . . . . 11  |-  N  =  ( C Nat  D )
65natrcl 14034 . . . . . . . . . 10  |-  ( R  e.  ( F N G )  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D
) ) )
74, 6syl 15 . . . . . . . . 9  |-  ( ph  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D ) ) )
87simpld 445 . . . . . . . 8  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
9 funcrcl 13947 . . . . . . . 8  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
108, 9syl 15 . . . . . . 7  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
1110simprd 449 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
1211adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
13 eqid 2366 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  C )
14 relfunc 13946 . . . . . . . 8  |-  Rel  ( C  Func  D )
15 1st2ndbr 6296 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1614, 8, 15sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1713, 1, 16funcf1 13950 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( Base `  D ) )
1817ffvelrnda 5772 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
197simprd 449 . . . . . . . 8  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
20 1st2ndbr 6296 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
2114, 19, 20sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
2213, 1, 21funcf1 13950 . . . . . 6  |-  ( ph  ->  ( 1st `  G
) : ( Base `  C ) --> ( Base `  D ) )
2322ffvelrnda 5772 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  G ) `  x )  e.  (
Base `  D )
)
24 fucass.t . . . . . . . . . 10  |-  ( ph  ->  T  e.  ( H N K ) )
255natrcl 14034 . . . . . . . . . 10  |-  ( T  e.  ( H N K )  ->  ( H  e.  ( C  Func  D )  /\  K  e.  ( C  Func  D
) ) )
2624, 25syl 15 . . . . . . . . 9  |-  ( ph  ->  ( H  e.  ( C  Func  D )  /\  K  e.  ( C  Func  D ) ) )
2726simpld 445 . . . . . . . 8  |-  ( ph  ->  H  e.  ( C 
Func  D ) )
28 1st2ndbr 6296 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  H  e.  ( C  Func  D
) )  ->  ( 1st `  H ) ( C  Func  D )
( 2nd `  H
) )
2914, 27, 28sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  H
) ( C  Func  D ) ( 2nd `  H
) )
3013, 1, 29funcf1 13950 . . . . . 6  |-  ( ph  ->  ( 1st `  H
) : ( Base `  C ) --> ( Base `  D ) )
3130ffvelrnda 5772 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  H ) `  x )  e.  (
Base `  D )
)
325, 4nat1st2nd 14035 . . . . . . 7  |-  ( ph  ->  R  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
3332adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  R  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
34 simpr 447 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
355, 33, 13, 2, 34natcl 14037 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( R `  x )  e.  ( ( ( 1st `  F
) `  x )
(  Hom  `  D ) ( ( 1st `  G
) `  x )
) )
36 fucass.s . . . . . . . 8  |-  ( ph  ->  S  e.  ( G N H ) )
375, 36nat1st2nd 14035 . . . . . . 7  |-  ( ph  ->  S  e.  ( <.
( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
3837adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  S  e.  ( <. ( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
395, 38, 13, 2, 34natcl 14037 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( S `  x )  e.  ( ( ( 1st `  G
) `  x )
(  Hom  `  D ) ( ( 1st `  H
) `  x )
) )
4026simprd 449 . . . . . . . 8  |-  ( ph  ->  K  e.  ( C 
Func  D ) )
41 1st2ndbr 6296 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  K  e.  ( C  Func  D
) )  ->  ( 1st `  K ) ( C  Func  D )
( 2nd `  K
) )
4214, 40, 41sylancr 644 . . . . . . 7  |-  ( ph  ->  ( 1st `  K
) ( C  Func  D ) ( 2nd `  K
) )
4313, 1, 42funcf1 13950 . . . . . 6  |-  ( ph  ->  ( 1st `  K
) : ( Base `  C ) --> ( Base `  D ) )
4443ffvelrnda 5772 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  K ) `  x )  e.  (
Base `  D )
)
455, 24nat1st2nd 14035 . . . . . . 7  |-  ( ph  ->  T  e.  ( <.
( 1st `  H
) ,  ( 2nd `  H ) >. N <. ( 1st `  K ) ,  ( 2nd `  K
) >. ) )
4645adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  T  e.  ( <. ( 1st `  H
) ,  ( 2nd `  H ) >. N <. ( 1st `  K ) ,  ( 2nd `  K
) >. ) )
475, 46, 13, 2, 34natcl 14037 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( T `  x )  e.  ( ( ( 1st `  H
) `  x )
(  Hom  `  D ) ( ( 1st `  K
) `  x )
) )
481, 2, 3, 12, 18, 23, 31, 35, 39, 44, 47catass 13798 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
( T `  x
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( R `  x ) )  =  ( ( T `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
49 fucass.q . . . . . 6  |-  Q  =  ( C FuncCat  D )
50 fucass.x . . . . . 6  |-  .xb  =  (comp `  Q )
5136adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  S  e.  ( G N H ) )
5224adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  T  e.  ( H N K ) )
5349, 5, 13, 3, 50, 51, 52, 34fuccoval 14047 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( T ( <. G ,  H >.  .xb  K ) S ) `  x )  =  ( ( T `
 x ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( S `
 x ) ) )
5453oveq1d 5996 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
( T ( <. G ,  H >.  .xb 
K ) S ) `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( R `
 x ) )  =  ( ( ( T `  x ) ( <. ( ( 1st `  G ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( S `  x ) ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( R `
 x ) ) )
554adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  R  e.  ( F N G ) )
5649, 5, 13, 3, 50, 55, 51, 34fuccoval 14047 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x )  =  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) )
5756oveq2d 5997 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( T `  x )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( ( S ( <. F ,  G >. 
.xb  H ) R ) `  x ) )  =  ( ( T `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) ) )
5848, 54, 573eqtr4d 2408 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
( T ( <. G ,  H >.  .xb 
K ) S ) `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( R `
 x ) )  =  ( ( T `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) )
5958mpteq2dva 4208 . 2  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  ( ( ( T ( <. G ,  H >. 
.xb  K ) S ) `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( R `  x ) ) )  =  ( x  e.  ( Base `  C
)  |->  ( ( T `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  K ) `  x
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) ) )
6049, 5, 50, 36, 24fuccocl 14048 . . 3  |-  ( ph  ->  ( T ( <. G ,  H >.  .xb 
K ) S )  e.  ( G N K ) )
6149, 5, 13, 3, 50, 4, 60fucco 14046 . 2  |-  ( ph  ->  ( ( T (
<. G ,  H >.  .xb 
K ) S ) ( <. F ,  G >. 
.xb  K ) R )  =  ( x  e.  ( Base `  C
)  |->  ( ( ( T ( <. G ,  H >.  .xb  K ) S ) `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( R `  x ) ) ) )
6249, 5, 50, 4, 36fuccocl 14048 . . 3  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  ( F N H ) )
6349, 5, 13, 3, 50, 62, 24fucco 14046 . 2  |-  ( ph  ->  ( T ( <. F ,  H >.  .xb 
K ) ( S ( <. F ,  G >. 
.xb  H ) R ) )  =  ( x  e.  ( Base `  C )  |->  ( ( T `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  H ) `
 x ) >.
(comp `  D )
( ( 1st `  K
) `  x )
) ( ( S ( <. F ,  G >. 
.xb  H ) R ) `  x ) ) ) )
6459, 61, 633eqtr4d 2408 1  |-  ( ph  ->  ( ( T (
<. G ,  H >.  .xb 
K ) S ) ( <. F ,  G >. 
.xb  K ) R )  =  ( T ( <. F ,  H >. 
.xb  K ) ( S ( <. F ,  G >.  .xb  H ) R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   <.cop 3732   class class class wbr 4125    e. cmpt 4179   Rel wrel 4797   ` cfv 5358  (class class class)co 5981   1stc1st 6247   2ndc2nd 6248   Basecbs 13356    Hom chom 13427  compcco 13428   Catccat 13776    Func cfunc 13938   Nat cnat 14025   FuncCat cfuc 14026
This theorem is referenced by:  fuccatid  14053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-hom 13440  df-cco 13441  df-cat 13780  df-func 13942  df-nat 14027  df-fuc 14028
  Copyright terms: Public domain W3C validator