MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullpropd Structured version   Unicode version

Theorem fullpropd 14118
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1  |-  ( ph  ->  (  Homf 
`  A )  =  (  Homf 
`  B ) )
fullpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
fullpropd.3  |-  ( ph  ->  (  Homf 
`  C )  =  (  Homf 
`  D ) )
fullpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
fullpropd.a  |-  ( ph  ->  A  e.  V )
fullpropd.b  |-  ( ph  ->  B  e.  V )
fullpropd.c  |-  ( ph  ->  C  e.  V )
fullpropd.d  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
fullpropd  |-  ( ph  ->  ( A Full  C )  =  ( B Full  D
) )

Proof of Theorem fullpropd
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfull 14106 . 2  |-  Rel  ( A Full  C )
2 relfull 14106 . 2  |-  Rel  ( B Full  D )
3 fullpropd.1 . . . . . . . 8  |-  ( ph  ->  (  Homf 
`  A )  =  (  Homf 
`  B ) )
43homfeqbas 13923 . . . . . . 7  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
54adantr 453 . . . . . 6  |-  ( (
ph  /\  f ( A  Func  C ) g )  ->  ( Base `  A )  =  (
Base `  B )
)
65adantr 453 . . . . . . 7  |-  ( ( ( ph  /\  f
( A  Func  C
) g )  /\  x  e.  ( Base `  A ) )  -> 
( Base `  A )  =  ( Base `  B
) )
7 eqid 2437 . . . . . . . . 9  |-  ( Base `  C )  =  (
Base `  C )
8 eqid 2437 . . . . . . . . 9  |-  (  Hom  `  C )  =  (  Hom  `  C )
9 eqid 2437 . . . . . . . . 9  |-  (  Hom  `  D )  =  (  Hom  `  D )
10 fullpropd.3 . . . . . . . . . 10  |-  ( ph  ->  (  Homf 
`  C )  =  (  Homf 
`  D ) )
1110ad3antrrr 712 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
(  Homf 
`  C )  =  (  Homf 
`  D ) )
12 eqid 2437 . . . . . . . . . . 11  |-  ( Base `  A )  =  (
Base `  A )
13 simpllr 737 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
f ( A  Func  C ) g )
1412, 7, 13funcf1 14064 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
f : ( Base `  A ) --> ( Base `  C ) )
15 simplr 733 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  ->  x  e.  ( Base `  A ) )
1614, 15ffvelrnd 5872 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( f `  x
)  e.  ( Base `  C ) )
17 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
y  e.  ( Base `  A ) )
1814, 17ffvelrnd 5872 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( f `  y
)  e.  ( Base `  C ) )
197, 8, 9, 11, 16, 18homfeqval 13924 . . . . . . . 8  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( ( f `  x ) (  Hom  `  C ) ( f `
 y ) )  =  ( ( f `
 x ) (  Hom  `  D )
( f `  y
) ) )
2019eqeq2d 2448 . . . . . . 7  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  C ) ( f `
 y ) )  <->  ran  ( x g y )  =  ( ( f `  x ) (  Hom  `  D
) ( f `  y ) ) ) )
216, 20raleqbidva 2919 . . . . . 6  |-  ( ( ( ph  /\  f
( A  Func  C
) g )  /\  x  e.  ( Base `  A ) )  -> 
( A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  C ) ( f `
 y ) )  <->  A. y  e.  ( Base `  B ) ran  ( x g y )  =  ( ( f `  x ) (  Hom  `  D
) ( f `  y ) ) ) )
225, 21raleqbidva 2919 . . . . 5  |-  ( (
ph  /\  f ( A  Func  C ) g )  ->  ( A. x  e.  ( Base `  A ) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  C ) ( f `
 y ) )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) ran  (
x g y )  =  ( ( f `
 x ) (  Hom  `  D )
( f `  y
) ) ) )
2322pm5.32da 624 . . . 4  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  C ) ( f `
 y ) ) )  <->  ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  D ) ( f `
 y ) ) ) ) )
24 fullpropd.2 . . . . . . 7  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
25 fullpropd.4 . . . . . . 7  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
26 fullpropd.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
27 fullpropd.b . . . . . . 7  |-  ( ph  ->  B  e.  V )
28 fullpropd.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
29 fullpropd.d . . . . . . 7  |-  ( ph  ->  D  e.  V )
303, 24, 10, 25, 26, 27, 28, 29funcpropd 14098 . . . . . 6  |-  ( ph  ->  ( A  Func  C
)  =  ( B 
Func  D ) )
3130breqd 4224 . . . . 5  |-  ( ph  ->  ( f ( A 
Func  C ) g  <->  f ( B  Func  D ) g ) )
3231anbi1d 687 . . . 4  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  D ) ( f `
 y ) ) )  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  D ) ( f `
 y ) ) ) ) )
3323, 32bitrd 246 . . 3  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  C ) ( f `
 y ) ) )  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  D ) ( f `
 y ) ) ) ) )
3412, 8isfull 14108 . . 3  |-  ( f ( A Full  C ) g  <->  ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  C ) ( f `
 y ) ) ) )
35 eqid 2437 . . . 4  |-  ( Base `  B )  =  (
Base `  B )
3635, 9isfull 14108 . . 3  |-  ( f ( B Full  D ) g  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) (  Hom  `  D ) ( f `
 y ) ) ) )
3733, 34, 363bitr4g 281 . 2  |-  ( ph  ->  ( f ( A Full 
C ) g  <->  f ( B Full  D ) g ) )
381, 2, 37eqbrrdiv 4975 1  |-  ( ph  ->  ( A Full  C )  =  ( B Full  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2706   class class class wbr 4213   ran crn 4880   ` cfv 5455  (class class class)co 6082   Basecbs 13470    Hom chom 13541    Homf chomf 13892  compfccomf 13893    Func cfunc 14052   Full cful 14100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-map 7021  df-ixp 7065  df-cat 13894  df-cid 13895  df-homf 13896  df-comf 13897  df-func 14056  df-full 14102
  Copyright terms: Public domain W3C validator