MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2 Structured version   Unicode version

Theorem fun2 5600
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
fun2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )

Proof of Theorem fun2
StepHypRef Expression
1 fun 5599 . 2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  C ) )
2 unidm 3482 . . 3  |-  ( C  u.  C )  =  C
3 feq3 5570 . . 3  |-  ( ( C  u.  C )  =  C  ->  (
( F  u.  G
) : ( A  u.  B ) --> ( C  u.  C )  <-> 
( F  u.  G
) : ( A  u.  B ) --> C ) )
42, 3ax-mp 8 . 2  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  C )  <->  ( F  u.  G ) : ( A  u.  B ) --> C )
51, 4sylib 189 1  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    u. cun 3310    i^i cin 3311   (/)c0 3620   -->wf 5442
This theorem is referenced by:  fresaun  5606  mapunen  7268  ac6sfi  7343  axdc3lem4  8325  fseq1p1m1  11114  uhgraun  21338  umgraun  21355  eupap1  21690  axlowdimlem5  25877  axlowdimlem7  25879
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-id 4490  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-fun 5448  df-fn 5449  df-f 5450
  Copyright terms: Public domain W3C validator