Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv Structured version   Unicode version

Theorem funbrafv 27989
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 5757. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
funbrafv  |-  ( Fun 
F  ->  ( A F B  ->  ( F''' A )  =  B ) )

Proof of Theorem funbrafv
StepHypRef Expression
1 funrel 5463 . . 3  |-  ( Fun 
F  ->  Rel  F )
2 releldm 5094 . . . . . . . 8  |-  ( ( Rel  F  /\  A F B )  ->  A  e.  dom  F )
3 funbrafvb 27987 . . . . . . . . . 10  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F''' A )  =  B  <->  A F B ) )
43biimprd 215 . . . . . . . . 9  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A F B  ->  ( F''' A )  =  B ) )
54expcom 425 . . . . . . . 8  |-  ( A  e.  dom  F  -> 
( Fun  F  ->  ( A F B  -> 
( F''' A )  =  B ) ) )
62, 5syl 16 . . . . . . 7  |-  ( ( Rel  F  /\  A F B )  ->  ( Fun  F  ->  ( A F B  ->  ( F''' A )  =  B ) ) )
76ex 424 . . . . . 6  |-  ( Rel 
F  ->  ( A F B  ->  ( Fun 
F  ->  ( A F B  ->  ( F''' A )  =  B ) ) ) )
87com14 84 . . . . 5  |-  ( A F B  ->  ( A F B  ->  ( Fun  F  ->  ( Rel  F  ->  ( F''' A )  =  B ) ) ) )
98pm2.43i 45 . . . 4  |-  ( A F B  ->  ( Fun  F  ->  ( Rel  F  ->  ( F''' A )  =  B ) ) )
109com13 76 . . 3  |-  ( Rel 
F  ->  ( Fun  F  ->  ( A F B  ->  ( F''' A )  =  B ) ) )
111, 10syl 16 . 2  |-  ( Fun 
F  ->  ( Fun  F  ->  ( A F B  ->  ( F''' A )  =  B ) ) )
1211pm2.43i 45 1  |-  ( Fun 
F  ->  ( A F B  ->  ( F''' A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   dom cdm 4870   Rel wrel 4875   Fun wfun 5440  '''cafv 27939
This theorem is referenced by:  afvelima  27998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-res 4882  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454  df-dfat 27941  df-afv 27942
  Copyright terms: Public domain W3C validator