MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcf2 Unicode version

Theorem funcf2 13742
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b  |-  B  =  ( Base `  D
)
funcixp.h  |-  H  =  (  Hom  `  D
)
funcixp.j  |-  J  =  (  Hom  `  E
)
funcixp.f  |-  ( ph  ->  F ( D  Func  E ) G )
funcf2.x  |-  ( ph  ->  X  e.  B )
funcf2.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
funcf2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) --> ( ( F `  X
) J ( F `
 Y ) ) )

Proof of Theorem funcf2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 5861 . . . 4  |-  ( X G Y )  =  ( G `  <. X ,  Y >. )
2 funcixp.b . . . . . 6  |-  B  =  ( Base `  D
)
3 funcixp.h . . . . . 6  |-  H  =  (  Hom  `  D
)
4 funcixp.j . . . . . 6  |-  J  =  (  Hom  `  E
)
5 funcixp.f . . . . . 6  |-  ( ph  ->  F ( D  Func  E ) G )
62, 3, 4, 5funcixp 13741 . . . . 5  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
7 funcf2.x . . . . . 6  |-  ( ph  ->  X  e.  B )
8 funcf2.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
9 opelxpi 4721 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
107, 8, 9syl2anc 642 . . . . 5  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
11 fveq2 5525 . . . . . . . . 9  |-  ( z  =  <. X ,  Y >.  ->  ( 1st `  z
)  =  ( 1st `  <. X ,  Y >. ) )
1211fveq2d 5529 . . . . . . . 8  |-  ( z  =  <. X ,  Y >.  ->  ( F `  ( 1st `  z ) )  =  ( F `
 ( 1st `  <. X ,  Y >. )
) )
13 fveq2 5525 . . . . . . . . 9  |-  ( z  =  <. X ,  Y >.  ->  ( 2nd `  z
)  =  ( 2nd `  <. X ,  Y >. ) )
1413fveq2d 5529 . . . . . . . 8  |-  ( z  =  <. X ,  Y >.  ->  ( F `  ( 2nd `  z ) )  =  ( F `
 ( 2nd `  <. X ,  Y >. )
) )
1512, 14oveq12d 5876 . . . . . . 7  |-  ( z  =  <. X ,  Y >.  ->  ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  =  ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) ) )
16 fveq2 5525 . . . . . . . 8  |-  ( z  =  <. X ,  Y >.  ->  ( H `  z )  =  ( H `  <. X ,  Y >. ) )
17 df-ov 5861 . . . . . . . 8  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
1816, 17syl6eqr 2333 . . . . . . 7  |-  ( z  =  <. X ,  Y >.  ->  ( H `  z )  =  ( X H Y ) )
1915, 18oveq12d 5876 . . . . . 6  |-  ( z  =  <. X ,  Y >.  ->  ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  =  ( ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  ^m  ( X H Y ) ) )
2019fvixp 6821 . . . . 5  |-  ( ( G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  <. X ,  Y >.  e.  ( B  X.  B ) )  -> 
( G `  <. X ,  Y >. )  e.  ( ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) )  ^m  ( X H Y ) ) )
216, 10, 20syl2anc 642 . . . 4  |-  ( ph  ->  ( G `  <. X ,  Y >. )  e.  ( ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) )  ^m  ( X H Y ) ) )
221, 21syl5eqel 2367 . . 3  |-  ( ph  ->  ( X G Y )  e.  ( ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  ^m  ( X H Y ) ) )
23 op1stg 6132 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 1st `  <. X ,  Y >. )  =  X )
2423fveq2d 5529 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( 1st `  <. X ,  Y >. ) )  =  ( F `  X ) )
25 op2ndg 6133 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
2625fveq2d 5529 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( 2nd `  <. X ,  Y >. ) )  =  ( F `  Y ) )
2724, 26oveq12d 5876 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  =  ( ( F `  X ) J ( F `  Y ) ) )
287, 8, 27syl2anc 642 . . . 4  |-  ( ph  ->  ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  =  ( ( F `  X ) J ( F `  Y ) ) )
2928oveq1d 5873 . . 3  |-  ( ph  ->  ( ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) )  ^m  ( X H Y ) )  =  ( ( ( F `  X ) J ( F `  Y ) )  ^m  ( X H Y ) ) )
3022, 29eleqtrd 2359 . 2  |-  ( ph  ->  ( X G Y )  e.  ( ( ( F `  X
) J ( F `
 Y ) )  ^m  ( X H Y ) ) )
31 elmapi 6792 . 2  |-  ( ( X G Y )  e.  ( ( ( F `  X ) J ( F `  Y ) )  ^m  ( X H Y ) )  ->  ( X G Y ) : ( X H Y ) --> ( ( F `  X ) J ( F `  Y ) ) )
3230, 31syl 15 1  |-  ( ph  ->  ( X G Y ) : ( X H Y ) --> ( ( F `  X
) J ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121    ^m cmap 6772   X_cixp 6817   Basecbs 13148    Hom chom 13219    Func cfunc 13728
This theorem is referenced by:  funcsect  13746  funcoppc  13749  cofu2  13760  cofucl  13762  cofulid  13764  cofurid  13765  funcres  13770  funcres2  13772  funcres2c  13775  isfull2  13785  isfth2  13789  fthsect  13799  fthmon  13801  fuccocl  13838  fucidcl  13839  invfuc  13848  natpropd  13850  catciso  13939  prfval  13973  prfcl  13977  prf1st  13978  prf2nd  13979  1st2ndprf  13980  evlfcllem  13995  evlfcl  13996  curf1cl  14002  curf2cl  14005  uncf2  14011  curfuncf  14012  uncfcurf  14013  diag2cl  14020  curf2ndf  14021  yonedalem4c  14051  yonedalem3b  14053  yonedainv  14055  yonffthlem  14056
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-ixp 6818  df-func 13732
  Copyright terms: Public domain W3C validator