MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcf2 Unicode version

Theorem funcf2 13841
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b  |-  B  =  ( Base `  D
)
funcixp.h  |-  H  =  (  Hom  `  D
)
funcixp.j  |-  J  =  (  Hom  `  E
)
funcixp.f  |-  ( ph  ->  F ( D  Func  E ) G )
funcf2.x  |-  ( ph  ->  X  e.  B )
funcf2.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
funcf2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) --> ( ( F `  X
) J ( F `
 Y ) ) )

Proof of Theorem funcf2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 5948 . . . 4  |-  ( X G Y )  =  ( G `  <. X ,  Y >. )
2 funcixp.b . . . . . 6  |-  B  =  ( Base `  D
)
3 funcixp.h . . . . . 6  |-  H  =  (  Hom  `  D
)
4 funcixp.j . . . . . 6  |-  J  =  (  Hom  `  E
)
5 funcixp.f . . . . . 6  |-  ( ph  ->  F ( D  Func  E ) G )
62, 3, 4, 5funcixp 13840 . . . . 5  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
7 funcf2.x . . . . . 6  |-  ( ph  ->  X  e.  B )
8 funcf2.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
9 opelxpi 4803 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
107, 8, 9syl2anc 642 . . . . 5  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
11 fveq2 5608 . . . . . . . . 9  |-  ( z  =  <. X ,  Y >.  ->  ( 1st `  z
)  =  ( 1st `  <. X ,  Y >. ) )
1211fveq2d 5612 . . . . . . . 8  |-  ( z  =  <. X ,  Y >.  ->  ( F `  ( 1st `  z ) )  =  ( F `
 ( 1st `  <. X ,  Y >. )
) )
13 fveq2 5608 . . . . . . . . 9  |-  ( z  =  <. X ,  Y >.  ->  ( 2nd `  z
)  =  ( 2nd `  <. X ,  Y >. ) )
1413fveq2d 5612 . . . . . . . 8  |-  ( z  =  <. X ,  Y >.  ->  ( F `  ( 2nd `  z ) )  =  ( F `
 ( 2nd `  <. X ,  Y >. )
) )
1512, 14oveq12d 5963 . . . . . . 7  |-  ( z  =  <. X ,  Y >.  ->  ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  =  ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) ) )
16 fveq2 5608 . . . . . . . 8  |-  ( z  =  <. X ,  Y >.  ->  ( H `  z )  =  ( H `  <. X ,  Y >. ) )
17 df-ov 5948 . . . . . . . 8  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
1816, 17syl6eqr 2408 . . . . . . 7  |-  ( z  =  <. X ,  Y >.  ->  ( H `  z )  =  ( X H Y ) )
1915, 18oveq12d 5963 . . . . . 6  |-  ( z  =  <. X ,  Y >.  ->  ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  =  ( ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  ^m  ( X H Y ) ) )
2019fvixp 6909 . . . . 5  |-  ( ( G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  <. X ,  Y >.  e.  ( B  X.  B ) )  -> 
( G `  <. X ,  Y >. )  e.  ( ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) )  ^m  ( X H Y ) ) )
216, 10, 20syl2anc 642 . . . 4  |-  ( ph  ->  ( G `  <. X ,  Y >. )  e.  ( ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) )  ^m  ( X H Y ) ) )
221, 21syl5eqel 2442 . . 3  |-  ( ph  ->  ( X G Y )  e.  ( ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  ^m  ( X H Y ) ) )
23 op1stg 6219 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 1st `  <. X ,  Y >. )  =  X )
2423fveq2d 5612 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( 1st `  <. X ,  Y >. ) )  =  ( F `  X ) )
25 op2ndg 6220 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
2625fveq2d 5612 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( 2nd `  <. X ,  Y >. ) )  =  ( F `  Y ) )
2724, 26oveq12d 5963 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  =  ( ( F `  X ) J ( F `  Y ) ) )
287, 8, 27syl2anc 642 . . . 4  |-  ( ph  ->  ( ( F `  ( 1st `  <. X ,  Y >. ) ) J ( F `  ( 2nd `  <. X ,  Y >. ) ) )  =  ( ( F `  X ) J ( F `  Y ) ) )
2928oveq1d 5960 . . 3  |-  ( ph  ->  ( ( ( F `
 ( 1st `  <. X ,  Y >. )
) J ( F `
 ( 2nd `  <. X ,  Y >. )
) )  ^m  ( X H Y ) )  =  ( ( ( F `  X ) J ( F `  Y ) )  ^m  ( X H Y ) ) )
3022, 29eleqtrd 2434 . 2  |-  ( ph  ->  ( X G Y )  e.  ( ( ( F `  X
) J ( F `
 Y ) )  ^m  ( X H Y ) ) )
31 elmapi 6880 . 2  |-  ( ( X G Y )  e.  ( ( ( F `  X ) J ( F `  Y ) )  ^m  ( X H Y ) )  ->  ( X G Y ) : ( X H Y ) --> ( ( F `  X ) J ( F `  Y ) ) )
3230, 31syl 15 1  |-  ( ph  ->  ( X G Y ) : ( X H Y ) --> ( ( F `  X
) J ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   <.cop 3719   class class class wbr 4104    X. cxp 4769   -->wf 5333   ` cfv 5337  (class class class)co 5945   1stc1st 6207   2ndc2nd 6208    ^m cmap 6860   X_cixp 6905   Basecbs 13245    Hom chom 13316    Func cfunc 13827
This theorem is referenced by:  funcsect  13845  funcoppc  13848  cofu2  13859  cofucl  13861  cofulid  13863  cofurid  13864  funcres  13869  funcres2  13871  funcres2c  13874  isfull2  13884  isfth2  13888  fthsect  13898  fthmon  13900  fuccocl  13937  fucidcl  13938  invfuc  13947  natpropd  13949  catciso  14038  prfval  14072  prfcl  14076  prf1st  14077  prf2nd  14078  1st2ndprf  14079  evlfcllem  14094  evlfcl  14095  curf1cl  14101  curf2cl  14104  uncf2  14110  curfuncf  14111  uncfcurf  14112  diag2cl  14119  curf2ndf  14120  yonedalem4c  14150  yonedalem3b  14152  yonedainv  14154  yonffthlem  14155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-map 6862  df-ixp 6906  df-func 13831
  Copyright terms: Public domain W3C validator