MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcinv Unicode version

Theorem funcinv 13747
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
funcinv.b  |-  B  =  ( Base `  D
)
funcinv.s  |-  I  =  (Inv `  D )
funcinv.t  |-  J  =  (Inv `  E )
funcinv.f  |-  ( ph  ->  F ( D  Func  E ) G )
funcinv.x  |-  ( ph  ->  X  e.  B )
funcinv.y  |-  ( ph  ->  Y  e.  B )
funcinv.m  |-  ( ph  ->  M ( X I Y ) N )
Assertion
Ref Expression
funcinv  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) J ( F `  Y
) ) ( ( Y G X ) `
 N ) )

Proof of Theorem funcinv
StepHypRef Expression
1 funcinv.b . . 3  |-  B  =  ( Base `  D
)
2 eqid 2283 . . 3  |-  (Sect `  D )  =  (Sect `  D )
3 eqid 2283 . . 3  |-  (Sect `  E )  =  (Sect `  E )
4 funcinv.f . . 3  |-  ( ph  ->  F ( D  Func  E ) G )
5 funcinv.x . . 3  |-  ( ph  ->  X  e.  B )
6 funcinv.y . . 3  |-  ( ph  ->  Y  e.  B )
7 funcinv.m . . . . 5  |-  ( ph  ->  M ( X I Y ) N )
8 funcinv.s . . . . . 6  |-  I  =  (Inv `  D )
9 df-br 4024 . . . . . . . . 9  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
104, 9sylib 188 . . . . . . . 8  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
11 funcrcl 13737 . . . . . . . 8  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
1210, 11syl 15 . . . . . . 7  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
1312simpld 445 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
141, 8, 13, 5, 6, 2isinv 13662 . . . . 5  |-  ( ph  ->  ( M ( X I Y ) N  <-> 
( M ( X (Sect `  D ) Y ) N  /\  N ( Y (Sect `  D ) X ) M ) ) )
157, 14mpbid 201 . . . 4  |-  ( ph  ->  ( M ( X (Sect `  D ) Y ) N  /\  N ( Y (Sect `  D ) X ) M ) )
1615simpld 445 . . 3  |-  ( ph  ->  M ( X (Sect `  D ) Y ) N )
171, 2, 3, 4, 5, 6, 16funcsect 13746 . 2  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) (Sect `  E ) ( F `
 Y ) ) ( ( Y G X ) `  N
) )
1815simprd 449 . . 3  |-  ( ph  ->  N ( Y (Sect `  D ) X ) M )
191, 2, 3, 4, 6, 5, 18funcsect 13746 . 2  |-  ( ph  ->  ( ( Y G X ) `  N
) ( ( F `
 Y ) (Sect `  E ) ( F `
 X ) ) ( ( X G Y ) `  M
) )
20 eqid 2283 . . 3  |-  ( Base `  E )  =  (
Base `  E )
21 funcinv.t . . 3  |-  J  =  (Inv `  E )
2212simprd 449 . . 3  |-  ( ph  ->  E  e.  Cat )
231, 20, 4funcf1 13740 . . . 4  |-  ( ph  ->  F : B --> ( Base `  E ) )
2423, 5ffvelrnd 5666 . . 3  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  E ) )
2523, 6ffvelrnd 5666 . . 3  |-  ( ph  ->  ( F `  Y
)  e.  ( Base `  E ) )
2620, 21, 22, 24, 25, 3isinv 13662 . 2  |-  ( ph  ->  ( ( ( X G Y ) `  M ) ( ( F `  X ) J ( F `  Y ) ) ( ( Y G X ) `  N )  <-> 
( ( ( X G Y ) `  M ) ( ( F `  X ) (Sect `  E )
( F `  Y
) ) ( ( Y G X ) `
 N )  /\  ( ( Y G X ) `  N
) ( ( F `
 Y ) (Sect `  E ) ( F `
 X ) ) ( ( X G Y ) `  M
) ) ) )
2717, 19, 26mpbir2and 888 1  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) J ( F `  Y
) ) ( ( Y G X ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   Catccat 13566  Sectcsect 13647  Invcinv 13648    Func cfunc 13728
This theorem is referenced by:  funciso  13748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-ixp 6818  df-sect 13650  df-inv 13651  df-func 13732
  Copyright terms: Public domain W3C validator