MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcixp Unicode version

Theorem funcixp 14027
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b  |-  B  =  ( Base `  D
)
funcixp.h  |-  H  =  (  Hom  `  D
)
funcixp.j  |-  J  =  (  Hom  `  E
)
funcixp.f  |-  ( ph  ->  F ( D  Func  E ) G )
Assertion
Ref Expression
funcixp  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
Distinct variable groups:    z, B    z, D    z, E    ph, z    z, F    z, G    z, J    z, H

Proof of Theorem funcixp
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcixp.f . . 3  |-  ( ph  ->  F ( D  Func  E ) G )
2 funcixp.b . . . 4  |-  B  =  ( Base `  D
)
3 eqid 2412 . . . 4  |-  ( Base `  E )  =  (
Base `  E )
4 funcixp.h . . . 4  |-  H  =  (  Hom  `  D
)
5 funcixp.j . . . 4  |-  J  =  (  Hom  `  E
)
6 eqid 2412 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
7 eqid 2412 . . . 4  |-  ( Id
`  E )  =  ( Id `  E
)
8 eqid 2412 . . . 4  |-  (comp `  D )  =  (comp `  D )
9 eqid 2412 . . . 4  |-  (comp `  E )  =  (comp `  E )
10 df-br 4181 . . . . . . 7  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
111, 10sylib 189 . . . . . 6  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
12 funcrcl 14023 . . . . . 6  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
1311, 12syl 16 . . . . 5  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
1413simpld 446 . . . 4  |-  ( ph  ->  D  e.  Cat )
1513simprd 450 . . . 4  |-  ( ph  ->  E  e.  Cat )
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 14024 . . 3  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  ( F : B --> ( Base `  E
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  ( ( Id `  D ) `
 x ) )  =  ( ( Id
`  E ) `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.
(comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) ) )
171, 16mpbid 202 . 2  |-  ( ph  ->  ( F : B --> ( Base `  E )  /\  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  A. x  e.  B  ( ( ( x G x ) `
 ( ( Id
`  D ) `  x ) )  =  ( ( Id `  E ) `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.
(comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) )
1817simp2d 970 1  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2674   <.cop 3785   class class class wbr 4180    X. cxp 4843   -->wf 5417   ` cfv 5421  (class class class)co 6048   1stc1st 6314   2ndc2nd 6315    ^m cmap 6985   X_cixp 7030   Basecbs 13432    Hom chom 13503  compcco 13504   Catccat 13852   Idccid 13853    Func cfunc 14014
This theorem is referenced by:  funcf2  14028  funcfn2  14029  wunfunc  14059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-map 6987  df-ixp 7031  df-func 14018
  Copyright terms: Public domain W3C validator