Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnvmptOLD Unicode version

Theorem funcnvmptOLD 23236
Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
funcnvmpt.0  |-  F/ x ph
funcnvmpt.1  |-  F/_ x A
funcnvmpt.2  |-  F/_ x F
funcnvmpt.3  |-  F  =  ( x  e.  A  |->  B )
funcnvmpt.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
funcnvmptOLD  |-  ( ph  ->  ( Fun  `' F  <->  A. y E* x ( x  e.  A  /\  y  =  B )
) )
Distinct variable groups:    x, y    y, F    ph, y
Allowed substitution hints:    ph( x)    A( x, y)    B( x, y)    F( x)    V( x, y)

Proof of Theorem funcnvmptOLD
StepHypRef Expression
1 relcnv 5053 . . . 4  |-  Rel  `' F
2 nfcv 2421 . . . . 5  |-  F/_ y `' F
3 funcnvmpt.2 . . . . . 6  |-  F/_ x F
43nfcnv 4862 . . . . 5  |-  F/_ x `' F
52, 4dffun6f 5271 . . . 4  |-  ( Fun  `' F  <->  ( Rel  `' F  /\  A. y E* x  y `' F x ) )
61, 5mpbiran 884 . . 3  |-  ( Fun  `' F  <->  A. y E* x  y `' F x )
7 vex 2793 . . . . . 6  |-  y  e. 
_V
8 vex 2793 . . . . . 6  |-  x  e. 
_V
97, 8brcnv 4866 . . . . 5  |-  ( y `' F x  <->  x F
y )
109mobii 2181 . . . 4  |-  ( E* x  y `' F x 
<->  E* x  x F y )
1110albii 1555 . . 3  |-  ( A. y E* x  y `' F x  <->  A. y E* x  x F
y )
126, 11bitri 240 . 2  |-  ( Fun  `' F  <->  A. y E* x  x F y )
13 nfv 1607 . . 3  |-  F/ y
ph
14 funcnvmpt.0 . . . 4  |-  F/ x ph
15 funmpt 5292 . . . . . . . . 9  |-  Fun  (
x  e.  A  |->  B )
16 funcnvmpt.3 . . . . . . . . . 10  |-  F  =  ( x  e.  A  |->  B )
1716funeqi 5277 . . . . . . . . 9  |-  ( Fun 
F  <->  Fun  ( x  e.  A  |->  B ) )
1815, 17mpbir 200 . . . . . . . 8  |-  Fun  F
19 funbrfv2b 5569 . . . . . . . 8  |-  ( Fun 
F  ->  ( x F y  <->  ( x  e.  dom  F  /\  ( F `  x )  =  y ) ) )
2018, 19ax-mp 8 . . . . . . 7  |-  ( x F y  <->  ( x  e.  dom  F  /\  ( F `  x )  =  y ) )
21 funcnvmpt.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
22 elex 2798 . . . . . . . . . . . . . 14  |-  ( B  e.  V  ->  B  e.  _V )
2321, 22syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  _V )
2423ex 423 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  ->  B  e.  _V )
)
2514, 24ralrimi 2626 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  A  B  e.  _V )
26 funcnvmpt.1 . . . . . . . . . . . 12  |-  F/_ x A
2726rabid2f 23137 . . . . . . . . . . 11  |-  ( A  =  { x  e.  A  |  B  e. 
_V }  <->  A. x  e.  A  B  e.  _V )
2825, 27sylibr 203 . . . . . . . . . 10  |-  ( ph  ->  A  =  { x  e.  A  |  B  e.  _V } )
2916dmmpt 5170 . . . . . . . . . 10  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
3028, 29syl6reqr 2336 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  A )
3130eleq2d 2352 . . . . . . . 8  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  A ) )
3231anbi1d 685 . . . . . . 7  |-  ( ph  ->  ( ( x  e. 
dom  F  /\  ( F `  x )  =  y )  <->  ( x  e.  A  /\  ( F `  x )  =  y ) ) )
3320, 32syl5bb 248 . . . . . 6  |-  ( ph  ->  ( x F y  <-> 
( x  e.  A  /\  ( F `  x
)  =  y ) ) )
3433bian1d 23124 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  /\  x F y )  <->  ( x  e.  A  /\  ( F `  x )  =  y ) ) )
3516fveq1i 5528 . . . . . . . . . 10  |-  ( F `
 x )  =  ( ( x  e.  A  |->  B ) `  x )
36 simpr 447 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
3726fvmpt2f 23226 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
3836, 21, 37syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
3935, 38syl5eq 2329 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
4039eqeq2d 2296 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  ( F `
 x )  <->  y  =  B ) )
4131biimpar 471 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  dom  F )
42 funbrfvb 5567 . . . . . . . . . 10  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
4318, 41, 42sylancr 644 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( F `  x
)  =  y  <->  x F
y ) )
44 eqcom 2287 . . . . . . . . . . 11  |-  ( ( F `  x )  =  y  <->  y  =  ( F `  x ) )
4544bibi1i 305 . . . . . . . . . 10  |-  ( ( ( F `  x
)  =  y  <->  x F
y )  <->  ( y  =  ( F `  x )  <->  x F
y ) )
4645imbi2i 303 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  ->  (
( F `  x
)  =  y  <->  x F
y ) )  <->  ( ( ph  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) ) )
4743, 46mpbi 199 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  ( F `
 x )  <->  x F
y ) )
4840, 47bitr3d 246 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  B  <->  x F
y ) )
4948ex 423 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  ( y  =  B  <-> 
x F y ) ) )
5049pm5.32d 620 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( x  e.  A  /\  x F y ) ) )
5134, 50, 333bitr4rd 277 . . . 4  |-  ( ph  ->  ( x F y  <-> 
( x  e.  A  /\  y  =  B
) ) )
5214, 51mobid 2179 . . 3  |-  ( ph  ->  ( E* x  x F y  <->  E* x
( x  e.  A  /\  y  =  B
) ) )
5313, 52albid 1754 . 2  |-  ( ph  ->  ( A. y E* x  x F y  <->  A. y E* x ( x  e.  A  /\  y  =  B )
) )
5412, 53syl5bb 248 1  |-  ( ph  ->  ( Fun  `' F  <->  A. y E* x ( x  e.  A  /\  y  =  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1529   F/wnf 1533    = wceq 1625    e. wcel 1686   E*wmo 2146   F/_wnfc 2408   A.wral 2545   {crab 2549   _Vcvv 2790   class class class wbr 4025    e. cmpt 4079   `'ccnv 4690   dom cdm 4691   Rel wrel 4696   Fun wfun 5251   ` cfv 5257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-fv 5265
  Copyright terms: Public domain W3C validator