MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcocnv2 Unicode version

Theorem funcocnv2 5667
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 5423 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
21simprbi 451 . 2  |-  ( Fun 
F  ->  ( F  o.  `' F )  C_  _I  )
3 iss 5156 . . 3  |-  ( ( F  o.  `' F
)  C_  _I  <->  ( F  o.  `' F )  =  (  _I  |`  dom  ( F  o.  `' F ) ) )
4 dfdm4 5030 . . . . . . . 8  |-  dom  F  =  ran  `' F
5 dmcoeq 5105 . . . . . . . 8  |-  ( dom 
F  =  ran  `' F  ->  dom  ( F  o.  `' F )  =  dom  `' F )
64, 5ax-mp 8 . . . . . . 7  |-  dom  ( F  o.  `' F
)  =  dom  `' F
7 df-rn 4856 . . . . . . 7  |-  ran  F  =  dom  `' F
86, 7eqtr4i 2435 . . . . . 6  |-  dom  ( F  o.  `' F
)  =  ran  F
98a1i 11 . . . . 5  |-  ( Fun 
F  ->  dom  ( F  o.  `' F )  =  ran  F )
109reseq2d 5113 . . . 4  |-  ( Fun 
F  ->  (  _I  |` 
dom  ( F  o.  `' F ) )  =  (  _I  |`  ran  F
) )
1110eqeq2d 2423 . . 3  |-  ( Fun 
F  ->  ( ( F  o.  `' F
)  =  (  _I  |`  dom  ( F  o.  `' F ) )  <->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) ) )
123, 11syl5bb 249 . 2  |-  ( Fun 
F  ->  ( ( F  o.  `' F
)  C_  _I  <->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) ) )
132, 12mpbid 202 1  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    C_ wss 3288    _I cid 4461   `'ccnv 4844   dom cdm 4845   ran crn 4846    |` cres 4847    o. ccom 4849   Rel wrel 4850   Fun wfun 5415
This theorem is referenced by:  fococnv2  5668  f1cocnv2  5670  funcoeqres  5673  cocnv  26325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-fun 5423
  Copyright terms: Public domain W3C validator