MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funconstss Unicode version

Theorem funconstss 5780
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
funconstss  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  =  B  <-> 
A  C_  ( `' F " { B }
) ) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem funconstss
StepHypRef Expression
1 funimass4 5709 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  { B } 
<-> 
A. x  e.  A  ( F `  x )  e.  { B }
) )
2 fvex 5675 . . . . 5  |-  ( F `
 x )  e. 
_V
32elsnc 3773 . . . 4  |-  ( ( F `  x )  e.  { B }  <->  ( F `  x )  =  B )
43ralbii 2666 . . 3  |-  ( A. x  e.  A  ( F `  x )  e.  { B }  <->  A. x  e.  A  ( F `  x )  =  B )
51, 4syl6rbb 254 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  =  B  <-> 
( F " A
)  C_  { B } ) )
6 funimass3 5778 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  { B } 
<->  A  C_  ( `' F " { B }
) ) )
75, 6bitrd 245 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  =  B  <-> 
A  C_  ( `' F " { B }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2642    C_ wss 3256   {csn 3750   `'ccnv 4810   dom cdm 4811   "cima 4814   Fun wfun 5381   ` cfv 5387
This theorem is referenced by:  fconst3  5887  ipasslem8  22179
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-fv 5395
  Copyright terms: Public domain W3C validator