MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcrcl Unicode version

Theorem funcrcl 13737
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcrcl  |-  ( F  e.  ( D  Func  E )  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )

Proof of Theorem funcrcl
Dummy variables  f 
b  g  m  n  t  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-func 13732 . 2  |-  Func  =  ( t  e.  Cat ,  u  e.  Cat  |->  {
<. f ,  g >.  |  [. ( Base `  t
)  /  b ]. ( f : b --> ( Base `  u
)  /\  g  e.  X_ z  e.  ( b  X.  b ) ( ( ( f `  ( 1st `  z ) ) (  Hom  `  u
) ( f `  ( 2nd `  z ) ) )  ^m  (
(  Hom  `  t ) `
 z ) )  /\  A. x  e.  b  ( ( ( x g x ) `
 ( ( Id
`  t ) `  x ) )  =  ( ( Id `  u ) `  (
f `  x )
)  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x (  Hom  `  t ) y ) A. n  e.  ( y (  Hom  `  t
) z ) ( ( x g z ) `  ( n ( <. x ,  y
>. (comp `  t )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  u )
( f `  z
) ) ( ( x g y ) `
 m ) ) ) ) } )
21elmpt2cl 6061 1  |-  ( F  e.  ( D  Func  E )  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   [.wsbc 2991   <.cop 3643   {copab 4076    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121    ^m cmap 6772   X_cixp 6817   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566   Idccid 13567    Func cfunc 13728
This theorem is referenced by:  funcf1  13740  funcixp  13741  funcid  13744  funcco  13745  funcsect  13746  funcinv  13747  funciso  13748  funcoppc  13749  cofucl  13762  cofulid  13764  cofurid  13765  funcres  13770  funcres2b  13771  funcpropd  13774  funcres2c  13775  isfull  13784  isfth  13788  fthsect  13799  fthinv  13800  fthmon  13801  fthepi  13802  ffthiso  13803  natfval  13820  fucbas  13834  fuchom  13835  fucco  13836  fuccocl  13838  fucidcl  13839  fuclid  13840  fucrid  13841  fucass  13842  fucid  13845  fucsect  13846  fucinv  13847  invfuc  13848  fuciso  13849  funcsetcres2  13925  prfcl  13977  prf1st  13978  prf2nd  13979  curf1cl  14002  curfcl  14006  curfpropd  14007  uncfval  14008  uncfcl  14009  uncf1  14010  uncf2  14011  curfuncf  14012  uncfcurf  14013  yonffthlem  14056  yoneda  14057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-dm 4699  df-iota 5219  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-func 13732
  Copyright terms: Public domain W3C validator