MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2 Unicode version

Theorem funcres2 14024
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcres2  |-  ( R  e.  (Subcat `  D
)  ->  ( C  Func  ( D  |`cat  R )
)  C_  ( C  Func  D ) )

Proof of Theorem funcres2
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 13988 . . 3  |-  Rel  ( C  Func  ( D  |`cat  R
) )
21a1i 11 . 2  |-  ( R  e.  (Subcat `  D
)  ->  Rel  ( C 
Func  ( D  |`cat  R
) ) )
3 simpr 448 . . . . 5  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  f ( C  Func  ( D  |`cat  R
) ) g )
4 eqid 2389 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
5 eqid 2389 . . . . . 6  |-  (  Hom  `  C )  =  (  Hom  `  C )
6 simpl 444 . . . . . 6  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  R  e.  (Subcat `  D ) )
7 eqidd 2390 . . . . . . 7  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  dom  dom  R  =  dom  dom  R )
86, 7subcfn 13967 . . . . . 6  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  R  Fn  ( dom  dom  R  X.  dom  dom  R ) )
9 eqid 2389 . . . . . . . 8  |-  ( Base `  ( D  |`cat  R )
)  =  ( Base `  ( D  |`cat  R )
)
104, 9, 3funcf1 13992 . . . . . . 7  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  f :
( Base `  C ) --> ( Base `  ( D  |`cat  R ) ) )
11 eqid 2389 . . . . . . . . 9  |-  ( D  |`cat 
R )  =  ( D  |`cat  R )
12 eqid 2389 . . . . . . . . 9  |-  ( Base `  D )  =  (
Base `  D )
13 subcrcl 13945 . . . . . . . . . 10  |-  ( R  e.  (Subcat `  D
)  ->  D  e.  Cat )
1413adantr 452 . . . . . . . . 9  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  D  e.  Cat )
156, 8, 12subcss1 13968 . . . . . . . . 9  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  dom  dom  R  C_  ( Base `  D
) )
1611, 12, 14, 8, 15rescbas 13958 . . . . . . . 8  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  dom  dom  R  =  ( Base `  ( D  |`cat  R ) ) )
17 feq3 5520 . . . . . . . 8  |-  ( dom 
dom  R  =  ( Base `  ( D  |`cat  R
) )  ->  (
f : ( Base `  C ) --> dom  dom  R  <-> 
f : ( Base `  C ) --> ( Base `  ( D  |`cat  R )
) ) )
1816, 17syl 16 . . . . . . 7  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  ( f : ( Base `  C
) --> dom  dom  R  <->  f :
( Base `  C ) --> ( Base `  ( D  |`cat  R ) ) ) )
1910, 18mpbird 224 . . . . . 6  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  f :
( Base `  C ) --> dom  dom  R )
20 eqid 2389 . . . . . . . 8  |-  (  Hom  `  ( D  |`cat  R )
)  =  (  Hom  `  ( D  |`cat  R )
)
21 simplr 732 . . . . . . . 8  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  f
( C  Func  ( D  |`cat  R ) ) g )
22 simprl 733 . . . . . . . 8  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  x  e.  ( Base `  C
) )
23 simprr 734 . . . . . . . 8  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  y  e.  ( Base `  C
) )
244, 5, 20, 21, 22, 23funcf2 13994 . . . . . . 7  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x g y ) : ( x (  Hom  `  C )
y ) --> ( ( f `  x ) (  Hom  `  ( D  |`cat  R ) ) ( f `  y ) ) )
2511, 12, 14, 8, 15reschom 13959 . . . . . . . . . 10  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  R  =  (  Hom  `  ( D  |`cat  R ) ) )
2625adantr 452 . . . . . . . . 9  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  R  =  (  Hom  `  ( D  |`cat  R ) ) )
2726oveqd 6039 . . . . . . . 8  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( f `  x
) R ( f `
 y ) )  =  ( ( f `
 x ) (  Hom  `  ( D  |`cat  R ) ) ( f `
 y ) ) )
28 feq3 5520 . . . . . . . 8  |-  ( ( ( f `  x
) R ( f `
 y ) )  =  ( ( f `
 x ) (  Hom  `  ( D  |`cat  R ) ) ( f `
 y ) )  ->  ( ( x g y ) : ( x (  Hom  `  C ) y ) --> ( ( f `  x ) R ( f `  y ) )  <->  ( x g y ) : ( x (  Hom  `  C
) y ) --> ( ( f `  x
) (  Hom  `  ( D  |`cat  R ) ) ( f `  y ) ) ) )
2927, 28syl 16 . . . . . . 7  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( x g y ) : ( x (  Hom  `  C
) y ) --> ( ( f `  x
) R ( f `
 y ) )  <-> 
( x g y ) : ( x (  Hom  `  C
) y ) --> ( ( f `  x
) (  Hom  `  ( D  |`cat  R ) ) ( f `  y ) ) ) )
3024, 29mpbird 224 . . . . . 6  |-  ( ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x g y ) : ( x (  Hom  `  C )
y ) --> ( ( f `  x ) R ( f `  y ) ) )
314, 5, 6, 8, 19, 30funcres2b 14023 . . . . 5  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  ( f
( C  Func  D
) g  <->  f ( C  Func  ( D  |`cat  R
) ) g ) )
323, 31mpbird 224 . . . 4  |-  ( ( R  e.  (Subcat `  D )  /\  f
( C  Func  ( D  |`cat  R ) ) g )  ->  f ( C  Func  D ) g )
3332ex 424 . . 3  |-  ( R  e.  (Subcat `  D
)  ->  ( f
( C  Func  ( D  |`cat  R ) ) g  ->  f ( C 
Func  D ) g ) )
34 df-br 4156 . . 3  |-  ( f ( C  Func  ( D  |`cat  R ) ) g  <->  <. f ,  g >.  e.  ( C  Func  ( D  |`cat  R ) ) )
35 df-br 4156 . . 3  |-  ( f ( C  Func  D
) g  <->  <. f ,  g >.  e.  ( C  Func  D ) )
3633, 34, 353imtr3g 261 . 2  |-  ( R  e.  (Subcat `  D
)  ->  ( <. f ,  g >.  e.  ( C  Func  ( D  |`cat  R ) )  ->  <. f ,  g >.  e.  ( C  Func  D )
) )
372, 36relssdv 4910 1  |-  ( R  e.  (Subcat `  D
)  ->  ( C  Func  ( D  |`cat  R )
)  C_  ( C  Func  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    C_ wss 3265   <.cop 3762   class class class wbr 4155   dom cdm 4820   Rel wrel 4825   -->wf 5392   ` cfv 5396  (class class class)co 6022   Basecbs 13398    Hom chom 13469   Catccat 13818    |`cat cresc 13937  Subcatcsubc 13938    Func cfunc 13980
This theorem is referenced by:  fthres2  14058  ressffth  14064  funcsetcres2  14177
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-hom 13482  df-cco 13483  df-cat 13822  df-cid 13823  df-homf 13824  df-ssc 13939  df-resc 13940  df-subc 13941  df-func 13984
  Copyright terms: Public domain W3C validator