MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcres2 Unicode version

Theorem funcsetcres2 13925
Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c  |-  C  =  ( SetCat `  U )
resssetc.d  |-  D  =  ( SetCat `  V )
resssetc.1  |-  ( ph  ->  U  e.  W )
resssetc.2  |-  ( ph  ->  V  C_  U )
Assertion
Ref Expression
funcsetcres2  |-  ( ph  ->  ( E  Func  D
)  C_  ( E  Func  C ) )

Proof of Theorem funcsetcres2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eqidd 2284 . . . . . . 7  |-  ( ph  ->  (  Homf 
`  E )  =  (  Homf 
`  E ) )
21adantr 451 . . . . . 6  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (  Homf  `  E
)  =  (  Homf  `  E ) )
3 eqidd 2284 . . . . . . 7  |-  ( ph  ->  (compf `  E )  =  (compf `  E ) )
43adantr 451 . . . . . 6  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (compf `  E )  =  (compf `  E ) )
5 eqid 2283 . . . . . . . . 9  |-  ( Base `  C )  =  (
Base `  C )
6 eqid 2283 . . . . . . . . 9  |-  (  Homf  `  C )  =  (  Homf 
`  C )
7 resssetc.1 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  W )
8 resssetc.c . . . . . . . . . . . 12  |-  C  =  ( SetCat `  U )
98setccat 13917 . . . . . . . . . . 11  |-  ( U  e.  W  ->  C  e.  Cat )
107, 9syl 15 . . . . . . . . . 10  |-  ( ph  ->  C  e.  Cat )
1110adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  C  e.  Cat )
12 resssetc.2 . . . . . . . . . . 11  |-  ( ph  ->  V  C_  U )
138, 7setcbas 13910 . . . . . . . . . . 11  |-  ( ph  ->  U  =  ( Base `  C ) )
1412, 13sseqtrd 3214 . . . . . . . . . 10  |-  ( ph  ->  V  C_  ( Base `  C ) )
1514adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  V  C_  ( Base `  C ) )
16 eqid 2283 . . . . . . . . 9  |-  ( Cs  V )  =  ( Cs  V )
17 eqid 2283 . . . . . . . . 9  |-  ( C  |`cat 
( (  Homf  `  C )  |`  ( V  X.  V
) ) )  =  ( C  |`cat  ( (  Homf  `  C )  |`  ( V  X.  V ) ) )
185, 6, 11, 15, 16, 17fullresc 13725 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  ( C  |`cat  ( (  Homf 
`  C )  |`  ( V  X.  V
) ) ) )  /\  (compf `  ( Cs  V ) )  =  (compf `  ( C  |`cat  ( (  Homf  `  C )  |`  ( V  X.  V ) ) ) ) ) )
1918simpld 445 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  ( C  |`cat  ( (  Homf 
`  C )  |`  ( V  X.  V
) ) ) ) )
20 resssetc.d . . . . . . . . . 10  |-  D  =  ( SetCat `  V )
218, 20, 7, 12resssetc 13924 . . . . . . . . 9  |-  ( ph  ->  ( (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  D )  /\  (compf `  ( Cs  V ) )  =  (compf `  D ) ) )
2221adantr 451 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  D )  /\  (compf `  ( Cs  V ) )  =  (compf `  D ) ) )
2322simpld 445 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  D ) )
2419, 23eqtr3d 2317 . . . . . 6  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (  Homf  `  ( C  |`cat  ( (  Homf  `  C )  |`  ( V  X.  V
) ) ) )  =  (  Homf  `  D ) )
2518simprd 449 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (compf `  ( Cs  V ) )  =  (compf `  ( C  |`cat  ( (  Homf  `  C )  |`  ( V  X.  V ) ) ) ) )
2622simprd 449 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (compf `  ( Cs  V ) )  =  (compf `  D ) )
2725, 26eqtr3d 2317 . . . . . 6  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  (compf `  ( C  |`cat  ( (  Homf  `  C )  |`  ( V  X.  V ) ) ) )  =  (compf `  D ) )
28 funcrcl 13737 . . . . . . . 8  |-  ( f  e.  ( E  Func  D )  ->  ( E  e.  Cat  /\  D  e. 
Cat ) )
2928adantl 452 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( E  e.  Cat  /\  D  e. 
Cat ) )
3029simpld 445 . . . . . 6  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  E  e.  Cat )
315, 6, 11, 15fullsubc 13724 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( (  Homf  `  C )  |`  ( V  X.  V ) )  e.  (Subcat `  C
) )
3217, 31subccat 13722 . . . . . 6  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( C  |`cat  ( (  Homf 
`  C )  |`  ( V  X.  V
) ) )  e. 
Cat )
3329simprd 449 . . . . . 6  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  D  e.  Cat )
342, 4, 24, 27, 30, 30, 32, 33funcpropd 13774 . . . . 5  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( E  Func  ( C  |`cat  ( (  Homf  `  C )  |`  ( V  X.  V ) ) ) )  =  ( E  Func  D )
)
35 funcres2 13772 . . . . . 6  |-  ( ( (  Homf 
`  C )  |`  ( V  X.  V
) )  e.  (Subcat `  C )  ->  ( E  Func  ( C  |`cat  ( (  Homf 
`  C )  |`  ( V  X.  V
) ) ) ) 
C_  ( E  Func  C ) )
3631, 35syl 15 . . . . 5  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( E  Func  ( C  |`cat  ( (  Homf  `  C )  |`  ( V  X.  V ) ) ) )  C_  ( E  Func  C ) )
3734, 36eqsstr3d 3213 . . . 4  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  ( E  Func  D )  C_  ( E  Func  C ) )
38 simpr 447 . . . 4  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  f  e.  ( E  Func  D ) )
3937, 38sseldd 3181 . . 3  |-  ( (
ph  /\  f  e.  ( E  Func  D ) )  ->  f  e.  ( E  Func  C ) )
4039ex 423 . 2  |-  ( ph  ->  ( f  e.  ( E  Func  D )  ->  f  e.  ( E 
Func  C ) ) )
4140ssrdv 3185 1  |-  ( ph  ->  ( E  Func  D
)  C_  ( E  Func  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152    X. cxp 4687    |` cres 4691   ` cfv 5255  (class class class)co 5858   Basecbs 13148   ↾s cress 13149   Catccat 13566    Homf chomf 13568  compfccomf 13569    |`cat cresc 13685  Subcatcsubc 13686    Func cfunc 13728   SetCatcsetc 13907
This theorem is referenced by:  yonedalem1  14046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-hom 13232  df-cco 13233  df-cat 13570  df-cid 13571  df-homf 13572  df-comf 13573  df-ssc 13687  df-resc 13688  df-subc 13689  df-func 13732  df-setc 13908
  Copyright terms: Public domain W3C validator