Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmpss Unicode version

Theorem fundmpss 25139
Description: If a class  F is a proper subset of a function  G, then  dom  F  C.  dom  G. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
fundmpss  |-  ( Fun 
G  ->  ( F  C.  G  ->  dom  F  C.  dom  G ) )

Proof of Theorem fundmpss
Dummy variables  p  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 3378 . . . . 5  |-  ( F 
C.  G  ->  F  C_  G )
2 dmss 5002 . . . . 5  |-  ( F 
C_  G  ->  dom  F 
C_  dom  G )
31, 2syl 16 . . . 4  |-  ( F 
C.  G  ->  dom  F 
C_  dom  G )
43a1i 11 . . 3  |-  ( Fun 
G  ->  ( F  C.  G  ->  dom  F  C_ 
dom  G ) )
5 pssdif 3626 . . . . . . . 8  |-  ( F 
C.  G  ->  ( G  \  F )  =/=  (/) )
6 n0 3573 . . . . . . . 8  |-  ( ( G  \  F )  =/=  (/)  <->  E. p  p  e.  ( G  \  F
) )
75, 6sylib 189 . . . . . . 7  |-  ( F 
C.  G  ->  E. p  p  e.  ( G  \  F ) )
87adantl 453 . . . . . 6  |-  ( ( Fun  G  /\  F  C.  G )  ->  E. p  p  e.  ( G  \  F ) )
9 funrel 5404 . . . . . . . . . . 11  |-  ( Fun 
G  ->  Rel  G )
10 reldif 4927 . . . . . . . . . . 11  |-  ( Rel 
G  ->  Rel  ( G 
\  F ) )
119, 10syl 16 . . . . . . . . . 10  |-  ( Fun 
G  ->  Rel  ( G 
\  F ) )
12 elrel 4911 . . . . . . . . . . . 12  |-  ( ( Rel  ( G  \  F )  /\  p  e.  ( G  \  F
) )  ->  E. x E. y  p  =  <. x ,  y >.
)
13 eleq1 2440 . . . . . . . . . . . . . . . 16  |-  ( p  =  <. x ,  y
>.  ->  ( p  e.  ( G  \  F
)  <->  <. x ,  y
>.  e.  ( G  \  F ) ) )
14 df-br 4147 . . . . . . . . . . . . . . . 16  |-  ( x ( G  \  F
) y  <->  <. x ,  y >.  e.  ( G  \  F ) )
1513, 14syl6bbr 255 . . . . . . . . . . . . . . 15  |-  ( p  =  <. x ,  y
>.  ->  ( p  e.  ( G  \  F
)  <->  x ( G 
\  F ) y ) )
1615biimpcd 216 . . . . . . . . . . . . . 14  |-  ( p  e.  ( G  \  F )  ->  (
p  =  <. x ,  y >.  ->  x
( G  \  F
) y ) )
1716adantl 453 . . . . . . . . . . . . 13  |-  ( ( Rel  ( G  \  F )  /\  p  e.  ( G  \  F
) )  ->  (
p  =  <. x ,  y >.  ->  x
( G  \  F
) y ) )
18172eximdv 1631 . . . . . . . . . . . 12  |-  ( ( Rel  ( G  \  F )  /\  p  e.  ( G  \  F
) )  ->  ( E. x E. y  p  =  <. x ,  y
>.  ->  E. x E. y  x ( G  \  F ) y ) )
1912, 18mpd 15 . . . . . . . . . . 11  |-  ( ( Rel  ( G  \  F )  /\  p  e.  ( G  \  F
) )  ->  E. x E. y  x ( G  \  F ) y )
2019ex 424 . . . . . . . . . 10  |-  ( Rel  ( G  \  F
)  ->  ( p  e.  ( G  \  F
)  ->  E. x E. y  x ( G  \  F ) y ) )
2111, 20syl 16 . . . . . . . . 9  |-  ( Fun 
G  ->  ( p  e.  ( G  \  F
)  ->  E. x E. y  x ( G  \  F ) y ) )
2221adantr 452 . . . . . . . 8  |-  ( ( Fun  G  /\  F  C.  G )  ->  (
p  e.  ( G 
\  F )  ->  E. x E. y  x ( G  \  F
) y ) )
23 difss 3410 . . . . . . . . . . . . 13  |-  ( G 
\  F )  C_  G
2423ssbri 4188 . . . . . . . . . . . 12  |-  ( x ( G  \  F
) y  ->  x G y )
2524eximi 1582 . . . . . . . . . . 11  |-  ( E. y  x ( G 
\  F ) y  ->  E. y  x G y )
2625a1i 11 . . . . . . . . . 10  |-  ( ( Fun  G  /\  F  C.  G )  ->  ( E. y  x ( G  \  F ) y  ->  E. y  x G y ) )
27 brdif 4194 . . . . . . . . . . . . . . 15  |-  ( x ( G  \  F
) y  <->  ( x G y  /\  -.  x F y ) )
2827simprbi 451 . . . . . . . . . . . . . 14  |-  ( x ( G  \  F
) y  ->  -.  x F y )
2928adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( Fun  G  /\  F  C.  G )  /\  x ( G  \  F ) y )  ->  -.  x F
y )
301ssbrd 4187 . . . . . . . . . . . . . . . 16  |-  ( F 
C.  G  ->  (
x F z  ->  x G z ) )
3130ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( Fun  G  /\  F  C.  G )  /\  x ( G  \  F ) y )  ->  ( x F z  ->  x G
z ) )
3227simplbi 447 . . . . . . . . . . . . . . . . . . 19  |-  ( x ( G  \  F
) y  ->  x G y )
33 dffun2 5397 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x A. y A. z ( ( x G y  /\  x G z )  -> 
y  =  z ) ) )
3433simprbi 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Fun 
G  ->  A. x A. y A. z ( ( x G y  /\  x G z )  ->  y  =  z ) )
35 sp 1755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z ( ( x G y  /\  x G z )  -> 
y  =  z )  ->  ( ( x G y  /\  x G z )  -> 
y  =  z ) )
3635sps 1762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. y A. z ( ( x G y  /\  x G z )  -> 
y  =  z )  ->  ( ( x G y  /\  x G z )  -> 
y  =  z ) )
3736sps 1762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x A. y A. z
( ( x G y  /\  x G z )  ->  y  =  z )  -> 
( ( x G y  /\  x G z )  ->  y  =  z ) )
3834, 37syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Fun 
G  ->  ( (
x G y  /\  x G z )  -> 
y  =  z ) )
39 breq2 4150 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  z  ->  (
x F y  <->  x F
z ) )
4039biimprd 215 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  (
x F z  ->  x F y ) )
4138, 40syl6 31 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
G  ->  ( (
x G y  /\  x G z )  -> 
( x F z  ->  x F y ) ) )
4241exp3a 426 . . . . . . . . . . . . . . . . . . 19  |-  ( Fun 
G  ->  ( x G y  ->  (
x G z  -> 
( x F z  ->  x F y ) ) ) )
4332, 42syl5 30 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
G  ->  ( x
( G  \  F
) y  ->  (
x G z  -> 
( x F z  ->  x F y ) ) ) )
4443imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  G  /\  x
( G  \  F
) y )  -> 
( x G z  ->  ( x F z  ->  x F
y ) ) )
4544adantlr 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( Fun  G  /\  F  C.  G )  /\  x ( G  \  F ) y )  ->  ( x G z  ->  ( x F z  ->  x F y ) ) )
4645com23 74 . . . . . . . . . . . . . . 15  |-  ( ( ( Fun  G  /\  F  C.  G )  /\  x ( G  \  F ) y )  ->  ( x F z  ->  ( x G z  ->  x F y ) ) )
4731, 46mpdd 38 . . . . . . . . . . . . . 14  |-  ( ( ( Fun  G  /\  F  C.  G )  /\  x ( G  \  F ) y )  ->  ( x F z  ->  x F
y ) )
4847exlimdv 1643 . . . . . . . . . . . . 13  |-  ( ( ( Fun  G  /\  F  C.  G )  /\  x ( G  \  F ) y )  ->  ( E. z  x F z  ->  x F y ) )
4929, 48mtod 170 . . . . . . . . . . . 12  |-  ( ( ( Fun  G  /\  F  C.  G )  /\  x ( G  \  F ) y )  ->  -.  E. z  x F z )
5049ex 424 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  F  C.  G )  ->  (
x ( G  \  F ) y  ->  -.  E. z  x F z ) )
5150exlimdv 1643 . . . . . . . . . 10  |-  ( ( Fun  G  /\  F  C.  G )  ->  ( E. y  x ( G  \  F ) y  ->  -.  E. z  x F z ) )
5226, 51jcad 520 . . . . . . . . 9  |-  ( ( Fun  G  /\  F  C.  G )  ->  ( E. y  x ( G  \  F ) y  ->  ( E. y  x G y  /\  -.  E. z  x F z ) ) )
5352eximdv 1629 . . . . . . . 8  |-  ( ( Fun  G  /\  F  C.  G )  ->  ( E. x E. y  x ( G  \  F
) y  ->  E. x
( E. y  x G y  /\  -.  E. z  x F z ) ) )
5422, 53syld 42 . . . . . . 7  |-  ( ( Fun  G  /\  F  C.  G )  ->  (
p  e.  ( G 
\  F )  ->  E. x ( E. y  x G y  /\  -.  E. z  x F z ) ) )
5554exlimdv 1643 . . . . . 6  |-  ( ( Fun  G  /\  F  C.  G )  ->  ( E. p  p  e.  ( G  \  F )  ->  E. x ( E. y  x G y  /\  -.  E. z  x F z ) ) )
568, 55mpd 15 . . . . 5  |-  ( ( Fun  G  /\  F  C.  G )  ->  E. x
( E. y  x G y  /\  -.  E. z  x F z ) )
57 nss 3342 . . . . . 6  |-  ( -. 
dom  G  C_  dom  F  <->  E. x ( x  e. 
dom  G  /\  -.  x  e.  dom  F ) )
58 vex 2895 . . . . . . . . 9  |-  x  e. 
_V
5958eldm 5000 . . . . . . . 8  |-  ( x  e.  dom  G  <->  E. y  x G y )
6058eldm 5000 . . . . . . . . 9  |-  ( x  e.  dom  F  <->  E. z  x F z )
6160notbii 288 . . . . . . . 8  |-  ( -.  x  e.  dom  F  <->  -. 
E. z  x F z )
6259, 61anbi12i 679 . . . . . . 7  |-  ( ( x  e.  dom  G  /\  -.  x  e.  dom  F )  <->  ( E. y  x G y  /\  -.  E. z  x F z ) )
6362exbii 1589 . . . . . 6  |-  ( E. x ( x  e. 
dom  G  /\  -.  x  e.  dom  F )  <->  E. x
( E. y  x G y  /\  -.  E. z  x F z ) )
6457, 63bitri 241 . . . . 5  |-  ( -. 
dom  G  C_  dom  F  <->  E. x ( E. y  x G y  /\  -.  E. z  x F z ) )
6556, 64sylibr 204 . . . 4  |-  ( ( Fun  G  /\  F  C.  G )  ->  -.  dom  G  C_  dom  F )
6665ex 424 . . 3  |-  ( Fun 
G  ->  ( F  C.  G  ->  -.  dom  G 
C_  dom  F )
)
674, 66jcad 520 . 2  |-  ( Fun 
G  ->  ( F  C.  G  ->  ( dom 
F  C_  dom  G  /\  -.  dom  G  C_  dom  F ) ) )
68 dfpss3 3369 . 2  |-  ( dom 
F  C.  dom  G  <->  ( dom  F 
C_  dom  G  /\  -.  dom  G  C_  dom  F ) )
6967, 68syl6ibr 219 1  |-  ( Fun 
G  ->  ( F  C.  G  ->  dom  F  C.  dom  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2543    \ cdif 3253    C_ wss 3256    C. wpss 3257   (/)c0 3564   <.cop 3753   class class class wbr 4146   dom cdm 4811   Rel wrel 4816   Fun wfun 5381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rab 2651  df-v 2894  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-br 4147  df-opab 4201  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-fun 5389
  Copyright terms: Public domain W3C validator