MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaex Structured version   Unicode version

Theorem funimaex 5534
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 4323. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
Hypothesis
Ref Expression
zfrep5.1  |-  B  e. 
_V
Assertion
Ref Expression
funimaex  |-  ( Fun 
A  ->  ( A " B )  e.  _V )

Proof of Theorem funimaex
StepHypRef Expression
1 zfrep5.1 . 2  |-  B  e. 
_V
2 funimaexg 5533 . 2  |-  ( ( Fun  A  /\  B  e.  _V )  ->  ( A " B )  e. 
_V )
31, 2mpan2 654 1  |-  ( Fun 
A  ->  ( A " B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1726   _Vcvv 2958   "cima 4884   Fun wfun 5451
This theorem is referenced by:  isarep2  5536  isofr  6065  isose  6066  f1oweALT  6077  f1opw  6302  tz9.12lem2  7717  hsmexlem4  8314  hsmexlem5  8315  zorn2lem7  8387  uniimadom  8424  zexALT  10305  fbasrn  17921  fnwe2lem2  27140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-fun 5459
  Copyright terms: Public domain W3C validator