Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmpt2 Structured version   Unicode version

Theorem funmpt2 5493
 Description: Functionality of a class given by a "maps to" notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1
Assertion
Ref Expression
funmpt2

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 5492 . 2
2 funmpt2.1 . . 3
32funeqi 5477 . 2
41, 3mpbir 202 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   cmpt 4269   wfun 5451 This theorem is referenced by:  tz9.12lem2  7717  tz9.12lem3  7718  rankf  7723  cardf2  7835  fin23lem30  8227  hashf1rn  11641  divstgpopn  18154  ustn0  18255  metuvalOLD  18584  metuval  18585  ipasslem8  22343  xppreima2  24065  funcnvmpt  24088  metidval  24290  pstmval  24295  brsiga  24542  measbasedom  24561  ballotlem7  24798  sinccvglem  25114  stoweidlem27  27766  stirlinglem14  27826 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-fun 5459
 Copyright terms: Public domain W3C validator