MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprab Unicode version

Theorem funoprab 5960
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
Hypothesis
Ref Expression
funoprab.1  |-  E* z ph
Assertion
Ref Expression
funoprab  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem funoprab
StepHypRef Expression
1 funoprab.1 . . 3  |-  E* z ph
21gen2 1537 . 2  |-  A. x A. y E* z ph
3 funoprabg 5959 . 2  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
42, 3ax-mp 8 1  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:   A.wal 1530   E*wmo 2157   Fun wfun 5265   {coprab 5875
This theorem is referenced by:  mpt2fun  5962  oprabex  5977  ovidig  5981  ovigg  5984  th3qcor  6782  axaddf  8783  axmulf  8784  funtransport  24726  funray  24835  funline  24837  cmpmorfun  26074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-fun 5273  df-oprab 5878
  Copyright terms: Public domain W3C validator