Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpsstri Structured version   Unicode version

Theorem funpsstri 25394
Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
funpsstri  |-  ( ( Fun  H  /\  ( F  C_  H  /\  G  C_  H )  /\  ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F ) )  ->  ( F  C.  G  \/  F  =  G  \/  G  C.  F ) )

Proof of Theorem funpsstri
StepHypRef Expression
1 funssres 5496 . . . . . 6  |-  ( ( Fun  H  /\  F  C_  H )  ->  ( H  |`  dom  F )  =  F )
21ex 425 . . . . 5  |-  ( Fun 
H  ->  ( F  C_  H  ->  ( H  |` 
dom  F )  =  F ) )
3 funssres 5496 . . . . . 6  |-  ( ( Fun  H  /\  G  C_  H )  ->  ( H  |`  dom  G )  =  G )
43ex 425 . . . . 5  |-  ( Fun 
H  ->  ( G  C_  H  ->  ( H  |` 
dom  G )  =  G ) )
52, 4anim12d 548 . . . 4  |-  ( Fun 
H  ->  ( ( F  C_  H  /\  G  C_  H )  ->  (
( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G ) ) )
6 ssres2 5176 . . . . . 6  |-  ( dom 
F  C_  dom  G  -> 
( H  |`  dom  F
)  C_  ( H  |` 
dom  G ) )
7 ssres2 5176 . . . . . 6  |-  ( dom 
G  C_  dom  F  -> 
( H  |`  dom  G
)  C_  ( H  |` 
dom  F ) )
86, 7orim12i 504 . . . . 5  |-  ( ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F )  ->  (
( H  |`  dom  F
)  C_  ( H  |` 
dom  G )  \/  ( H  |`  dom  G
)  C_  ( H  |` 
dom  F ) ) )
9 sseq12 3373 . . . . . 6  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( H  |`  dom  F )  C_  ( H  |`  dom  G
)  <->  F  C_  G ) )
10 sseq12 3373 . . . . . . 7  |-  ( ( ( H  |`  dom  G
)  =  G  /\  ( H  |`  dom  F
)  =  F )  ->  ( ( H  |`  dom  G )  C_  ( H  |`  dom  F
)  <->  G  C_  F ) )
1110ancoms 441 . . . . . 6  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( H  |`  dom  G )  C_  ( H  |`  dom  F
)  <->  G  C_  F ) )
129, 11orbi12d 692 . . . . 5  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( ( H  |`  dom  F ) 
C_  ( H  |`  dom  G )  \/  ( H  |`  dom  G ) 
C_  ( H  |`  dom  F ) )  <->  ( F  C_  G  \/  G  C_  F ) ) )
138, 12syl5ib 212 . . . 4  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( dom 
F  C_  dom  G  \/  dom  G  C_  dom  F )  ->  ( F  C_  G  \/  G  C_  F
) ) )
145, 13syl6 32 . . 3  |-  ( Fun 
H  ->  ( ( F  C_  H  /\  G  C_  H )  ->  (
( dom  F  C_  dom  G  \/  dom  G  C_  dom  F )  ->  ( F  C_  G  \/  G  C_  F ) ) ) )
15143imp 1148 . 2  |-  ( ( Fun  H  /\  ( F  C_  H  /\  G  C_  H )  /\  ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F ) )  ->  ( F  C_  G  \/  G  C_  F ) )
16 sspsstri 3451 . 2  |-  ( ( F  C_  G  \/  G  C_  F )  <->  ( F  C.  G  \/  F  =  G  \/  G  C.  F ) )
1715, 16sylib 190 1  |-  ( ( Fun  H  /\  ( F  C_  H  /\  G  C_  H )  /\  ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F ) )  ->  ( F  C.  G  \/  F  =  G  \/  G  C.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    \/ w3o 936    /\ w3a 937    = wceq 1653    C_ wss 3322    C. wpss 3323   dom cdm 4881    |` cres 4883   Fun wfun 5451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-res 4893  df-fun 5459
  Copyright terms: Public domain W3C validator