Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funres11 Structured version   Unicode version

Theorem funres11 5522
 Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11

Proof of Theorem funres11
StepHypRef Expression
1 resss 5171 . 2
2 cnvss 5046 . 2
3 funss 5473 . 2
41, 2, 3mp2b 10 1
 Colors of variables: wff set class Syntax hints:   wi 4   wss 3321  ccnv 4878   cres 4881   wfun 5449 This theorem is referenced by:  f1ssres  5647  resdif  5697  ssdomg  7154  sbthlem8  7225  spthispth  21574 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-v 2959  df-in 3328  df-ss 3335  df-br 4214  df-opab 4268  df-rel 4886  df-cnv 4887  df-co 4888  df-res 4891  df-fun 5457
 Copyright terms: Public domain W3C validator