MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funressn Structured version   Unicode version

Theorem funressn 5922
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
funressn  |-  ( Fun 
F  ->  ( F  |` 
{ B } ) 
C_  { <. B , 
( F `  B
) >. } )

Proof of Theorem funressn
StepHypRef Expression
1 funfn 5485 . . . 4  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 fnressn 5921 . . . 4  |-  ( ( F  Fn  dom  F  /\  B  e.  dom  F )  ->  ( F  |` 
{ B } )  =  { <. B , 
( F `  B
) >. } )
31, 2sylanb 460 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )
4 eqimss 3402 . . 3  |-  ( ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. }  ->  ( F  |`  { B } )  C_  {
<. B ,  ( F `
 B ) >. } )
53, 4syl 16 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F  |`  { B } )  C_  { <. B ,  ( F `  B ) >. } )
6 disjsn 3870 . . . . 5  |-  ( ( dom  F  i^i  { B } )  =  (/)  <->  -.  B  e.  dom  F )
7 fnresdisj 5558 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( ( dom  F  i^i  { B } )  =  (/)  <->  ( F  |`  { B } )  =  (/) ) )
81, 7sylbi 189 . . . . 5  |-  ( Fun 
F  ->  ( ( dom  F  i^i  { B } )  =  (/)  <->  ( F  |`  { B }
)  =  (/) ) )
96, 8syl5bbr 252 . . . 4  |-  ( Fun 
F  ->  ( -.  B  e.  dom  F  <->  ( F  |` 
{ B } )  =  (/) ) )
109biimpa 472 . . 3  |-  ( ( Fun  F  /\  -.  B  e.  dom  F )  ->  ( F  |`  { B } )  =  (/) )
11 0ss 3658 . . 3  |-  (/)  C_  { <. B ,  ( F `  B ) >. }
1210, 11syl6eqss 3400 . 2  |-  ( ( Fun  F  /\  -.  B  e.  dom  F )  ->  ( F  |`  { B } )  C_  {
<. B ,  ( F `
 B ) >. } )
135, 12pm2.61dan 768 1  |-  ( Fun 
F  ->  ( F  |` 
{ B } ) 
C_  { <. B , 
( F `  B
) >. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    i^i cin 3321    C_ wss 3322   (/)c0 3630   {csn 3816   <.cop 3819   dom cdm 4881    |` cres 4883   Fun wfun 5451    Fn wfn 5452   ` cfv 5457
This theorem is referenced by:  tfrlem16  6657  fnfi  7387  fodomfi  7388  bnj142  29167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465
  Copyright terms: Public domain W3C validator