MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funrnex Structured version   Unicode version

Theorem funrnex 5969
Description: If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5965. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
funrnex  |-  ( dom 
F  e.  B  -> 
( Fun  F  ->  ran 
F  e.  _V )
)

Proof of Theorem funrnex
StepHypRef Expression
1 funex 5965 . . 3  |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )
21ex 425 . 2  |-  ( Fun 
F  ->  ( dom  F  e.  B  ->  F  e.  _V ) )
3 rnexg 5133 . 2  |-  ( F  e.  _V  ->  ran  F  e.  _V )
42, 3syl6com 34 1  |-  ( dom 
F  e.  B  -> 
( Fun  F  ->  ran 
F  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1726   _Vcvv 2958   dom cdm 4880   ran crn 4881   Fun wfun 5450
This theorem is referenced by:  zfrep6  5970  fornex  5972  tz7.48-3  6703  inf0  7578  noinfepOLD  7617  axcc2lem  8318  zorn2lem4  8381  fnct  24107  hashimarn  28174
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464
  Copyright terms: Public domain W3C validator