MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssxp Structured version   Unicode version

Theorem funssxp 5607
Description: Two ways of specifying a partial function from  A to  B. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 5485 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
21biimpi 188 . . . . 5  |-  ( Fun 
F  ->  F  Fn  dom  F )
3 rnss 5101 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
4 rnxpss 5304 . . . . . 6  |-  ran  ( A  X.  B )  C_  B
53, 4syl6ss 3362 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
62, 5anim12i 551 . . . 4  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F  Fn  dom  F  /\  ran  F  C_  B )
)
7 df-f 5461 . . . 4  |-  ( F : dom  F --> B  <->  ( F  Fn  dom  F  /\  ran  F 
C_  B ) )
86, 7sylibr 205 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  F : dom  F --> B )
9 dmss 5072 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  dom  ( A  X.  B ) )
10 dmxpss 5303 . . . . 5  |-  dom  ( A  X.  B )  C_  A
119, 10syl6ss 3362 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  A )
1211adantl 454 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  dom  F 
C_  A )
138, 12jca 520 . 2  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
14 ffun 5596 . . . 4  |-  ( F : dom  F --> B  ->  Fun  F )
1514adantr 453 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  Fun  F )
16 fssxp 5605 . . . 4  |-  ( F : dom  F --> B  ->  F  C_  ( dom  F  X.  B ) )
17 xpss1 4987 . . . 4  |-  ( dom 
F  C_  A  ->  ( dom  F  X.  B
)  C_  ( A  X.  B ) )
1816, 17sylan9ss 3363 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  F  C_  ( A  X.  B
) )
1915, 18jca 520 . 2  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  ( Fun  F  /\  F  C_  ( A  X.  B
) ) )
2013, 19impbii 182 1  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    C_ wss 3322    X. cxp 4879   dom cdm 4881   ran crn 4882   Fun wfun 5451    Fn wfn 5452   -->wf 5453
This theorem is referenced by:  elpm2g  7036  volf  19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-xp 4887  df-rel 4888  df-cnv 4889  df-dm 4891  df-rn 4892  df-fun 5459  df-fn 5460  df-f 5461
  Copyright terms: Public domain W3C validator