MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssxp Unicode version

Theorem funssxp 5402
Description: Two ways of specifying a partial function from  A to  B. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 5283 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
21biimpi 186 . . . . 5  |-  ( Fun 
F  ->  F  Fn  dom  F )
3 rnss 4907 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
4 rnxpss 5108 . . . . . 6  |-  ran  ( A  X.  B )  C_  B
53, 4syl6ss 3191 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
62, 5anim12i 549 . . . 4  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F  Fn  dom  F  /\  ran  F  C_  B )
)
7 df-f 5259 . . . 4  |-  ( F : dom  F --> B  <->  ( F  Fn  dom  F  /\  ran  F 
C_  B ) )
86, 7sylibr 203 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  F : dom  F --> B )
9 dmss 4878 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  dom  ( A  X.  B ) )
10 dmxpss 5107 . . . . 5  |-  dom  ( A  X.  B )  C_  A
119, 10syl6ss 3191 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  A )
1211adantl 452 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  dom  F 
C_  A )
138, 12jca 518 . 2  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
14 ffun 5391 . . . 4  |-  ( F : dom  F --> B  ->  Fun  F )
1514adantr 451 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  Fun  F )
16 fssxp 5400 . . . 4  |-  ( F : dom  F --> B  ->  F  C_  ( dom  F  X.  B ) )
17 xpss1 4795 . . . 4  |-  ( dom 
F  C_  A  ->  ( dom  F  X.  B
)  C_  ( A  X.  B ) )
1816, 17sylan9ss 3192 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  F  C_  ( A  X.  B
) )
1915, 18jca 518 . 2  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  ( Fun  F  /\  F  C_  ( A  X.  B
) ) )
2013, 19impbii 180 1  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    C_ wss 3152    X. cxp 4687   dom cdm 4689   ran crn 4690   Fun wfun 5249    Fn wfn 5250   -->wf 5251
This theorem is referenced by:  elpm2g  6787  volf  18888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259
  Copyright terms: Public domain W3C validator