MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funtp Unicode version

Theorem funtp 5303
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
funtp.1  |-  A  e. 
_V
funtp.2  |-  B  e. 
_V
funtp.3  |-  C  e. 
_V
funtp.4  |-  D  e. 
_V
funtp.5  |-  E  e. 
_V
funtp.6  |-  F  e. 
_V
Assertion
Ref Expression
funtp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )

Proof of Theorem funtp
StepHypRef Expression
1 funtp.1 . . . . . 6  |-  A  e. 
_V
2 funtp.2 . . . . . 6  |-  B  e. 
_V
3 funtp.4 . . . . . 6  |-  D  e. 
_V
4 funtp.5 . . . . . 6  |-  E  e. 
_V
51, 2, 3, 4funpr 5302 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. } )
6 funtp.3 . . . . . 6  |-  C  e. 
_V
7 funtp.6 . . . . . 6  |-  F  e. 
_V
86, 7funsn 5300 . . . . 5  |-  Fun  { <. C ,  F >. }
95, 8jctir 524 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } ) )
103, 4dmprop 5148 . . . . . . 7  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  { A ,  B }
11 df-pr 3647 . . . . . . 7  |-  { A ,  B }  =  ( { A }  u.  { B } )
1210, 11eqtri 2303 . . . . . 6  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  ( { A }  u.  { B } )
137dmsnop 5147 . . . . . 6  |-  dom  { <. C ,  F >. }  =  { C }
1412, 13ineq12i 3368 . . . . 5  |-  ( dom 
{ <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  ( ( { A }  u.  { B } )  i^i 
{ C } )
15 disjsn2 3694 . . . . . . 7  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
16 disjsn2 3694 . . . . . . 7  |-  ( B  =/=  C  ->  ( { B }  i^i  { C } )  =  (/) )
1715, 16anim12i 549 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  i^i  { C }
)  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) )
18 undisj1 3506 . . . . . 6  |-  ( ( ( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) 
<->  ( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
1917, 18sylib 188 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
2014, 19syl5eq 2327 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  {
<. C ,  F >. } )  =  (/) )
21 funun 5296 . . . 4  |-  ( ( ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } )  /\  ( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  (/) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
229, 20, 21syl2an 463 . . 3  |-  ( ( A  =/=  B  /\  ( A  =/=  C  /\  B  =/=  C
) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
23223impb 1147 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
24 df-tp 3648 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } )
2524funeqi 5275 . 2  |-  ( Fun 
{ <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  <->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) )
2623, 25sylibr 203 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   {cpr 3641   {ctp 3642   <.cop 3643   dom cdm 4689   Fun wfun 5249
This theorem is referenced by:  fntp  5306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-fun 5257
  Copyright terms: Public domain W3C validator