Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funtransport Unicode version

Theorem funtransport 24654
Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funtransport  |-  Fun TransportTo

Proof of Theorem funtransport
Dummy variables  m  n  p  q  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 2707 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  <->  ( E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2 simp1 955 . . . . . . . . . . 11  |-  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  ->  p  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )
3 simp1 955 . . . . . . . . . . 11  |-  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  ->  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) )
42, 3anim12i 549 . . . . . . . . . 10  |-  ( ( ( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  ( p  e.  (
( EE `  m
)  X.  ( EE
`  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) )  ->  ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m
)  X.  ( EE
`  m ) ) ) )
54anim1i 551 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  ( p  e.  (
( EE `  m
)  X.  ( EE
`  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) )  /\  ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  ( (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m
) ) )  /\  ( x  =  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
65an4s 799 . . . . . . . 8  |-  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  ( (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m
) ) )  /\  ( x  =  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
7 xp1st 6149 . . . . . . . . . 10  |-  ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  ->  ( 1st `  p )  e.  ( EE `  n
) )
8 xp1st 6149 . . . . . . . . . 10  |-  ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  ->  ( 1st `  p )  e.  ( EE `  m
) )
9 axdimuniq 24541 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\  ( 1st `  p
)  e.  ( EE
`  n ) )  /\  ( m  e.  NN  /\  ( 1st `  p )  e.  ( EE `  m ) ) )  ->  n  =  m )
10 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  ( EE `  n )  =  ( EE `  m
) )
1110riotaeqdv 6305 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )
1211eqeq2d 2294 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  <->  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
1312anbi2d 684 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
14 eqtr3 2302 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y )
1513, 14syl6bir 220 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
169, 15syl 15 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  ( 1st `  p
)  e.  ( EE
`  n ) )  /\  ( m  e.  NN  /\  ( 1st `  p )  e.  ( EE `  m ) ) )  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
1716an4s 799 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\  m  e.  NN )  /\  ( ( 1st `  p )  e.  ( EE `  n )  /\  ( 1st `  p
)  e.  ( EE
`  m ) ) )  ->  ( (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
1817ex 423 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( 1st `  p )  e.  ( EE `  n )  /\  ( 1st `  p
)  e.  ( EE
`  m ) )  ->  ( ( x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) )  /\  y  =  (
iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) ) )
197, 8, 18syl2ani 637 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m
)  X.  ( EE
`  m ) ) )  ->  ( (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) ) )
2019imp3a 420 . . . . . . . 8  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) )  /\  ( x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) )  /\  y  =  (
iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
216, 20syl5 28 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  y  =  ( iota_ r  e.  ( EE `  m
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
2221rexlimivv 2672 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
231, 22sylbir 204 . . . . 5  |-  ( ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
2423gen2 1534 . . . 4  |-  A. x A. y ( ( E. n  e.  NN  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
25 eqeq1 2289 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  <->  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
2625anbi2d 684 . . . . . . 7  |-  ( x  =  y  ->  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2726rexbidv 2564 . . . . . 6  |-  ( x  =  y  ->  ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2810, 10xpeq12d 4714 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  m )  X.  ( EE `  m
) ) )
2928eleq2d 2350 . . . . . . . . 9  |-  ( n  =  m  ->  (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) ) )
3028eleq2d 2350 . . . . . . . . 9  |-  ( n  =  m  ->  (
q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  q  e.  ( ( EE `  m )  X.  ( EE `  m ) ) ) )
3129, 303anbi12d 1253 . . . . . . . 8  |-  ( n  =  m  ->  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  <->  ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) ) )
3231, 12anbi12d 691 . . . . . . 7  |-  ( n  =  m  ->  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
3332cbvrexv 2765 . . . . . 6  |-  ( E. n  e.  NN  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. m  e.  NN  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
3427, 33syl6bb 252 . . . . 5  |-  ( x  =  y  ->  ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. m  e.  NN  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
3534mo4 2176 . . . 4  |-  ( E* x E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  A. x A. y ( ( E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
3624, 35mpbir 200 . . 3  |-  E* x E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )
3736funoprab 5944 . 2  |-  Fun  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
38 df-transport 24653 . . 3  |- TransportTo  =  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
3938funeqi 5275 . 2  |-  ( Fun TransportTo  <->  Fun  {
<. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) } )
4037, 39mpbir 200 1  |-  Fun TransportTo
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684   E*wmo 2144    =/= wne 2446   E.wrex 2544   <.cop 3643   class class class wbr 4023    X. cxp 4687   Fun wfun 5249   ` cfv 5255   {coprab 5859   1stc1st 6120   2ndc2nd 6121   iota_crio 6297   NNcn 9746   EEcee 24516    Btwn cbtwn 24517  Cgrccgr 24518  TransportToctransport 24652
This theorem is referenced by:  fvtransport  24655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-z 10025  df-uz 10231  df-fz 10783  df-ee 24519  df-transport 24653
  Copyright terms: Public domain W3C validator