Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funtransport Structured version   Unicode version

Theorem funtransport 25957
Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funtransport  |-  Fun TransportTo

Proof of Theorem funtransport
Dummy variables  m  n  p  q  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 2867 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  <->  ( E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2 simp1 957 . . . . . . . . . . 11  |-  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  ->  p  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )
3 simp1 957 . . . . . . . . . . 11  |-  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  ->  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) )
42, 3anim12i 550 . . . . . . . . . 10  |-  ( ( ( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  ( p  e.  (
( EE `  m
)  X.  ( EE
`  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) )  ->  ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m
)  X.  ( EE
`  m ) ) ) )
54anim1i 552 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  ( p  e.  (
( EE `  m
)  X.  ( EE
`  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) )  /\  ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  ( (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m
) ) )  /\  ( x  =  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
65an4s 800 . . . . . . . 8  |-  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  ( (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m
) ) )  /\  ( x  =  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
7 xp1st 6368 . . . . . . . . . 10  |-  ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  ->  ( 1st `  p )  e.  ( EE `  n
) )
8 xp1st 6368 . . . . . . . . . 10  |-  ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  ->  ( 1st `  p )  e.  ( EE `  m
) )
9 axdimuniq 25844 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\  ( 1st `  p
)  e.  ( EE
`  n ) )  /\  ( m  e.  NN  /\  ( 1st `  p )  e.  ( EE `  m ) ) )  ->  n  =  m )
10 fveq2 5720 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  ( EE `  n )  =  ( EE `  m
) )
1110riotaeqdv 6542 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )
1211eqeq2d 2446 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  <->  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
1312anbi2d 685 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
14 eqtr3 2454 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y )
1513, 14syl6bir 221 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
169, 15syl 16 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  ( 1st `  p
)  e.  ( EE
`  n ) )  /\  ( m  e.  NN  /\  ( 1st `  p )  e.  ( EE `  m ) ) )  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
1716an4s 800 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\  m  e.  NN )  /\  ( ( 1st `  p )  e.  ( EE `  n )  /\  ( 1st `  p
)  e.  ( EE
`  m ) ) )  ->  ( (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
1817ex 424 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( 1st `  p )  e.  ( EE `  n )  /\  ( 1st `  p
)  e.  ( EE
`  m ) )  ->  ( ( x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) )  /\  y  =  (
iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) ) )
197, 8, 18syl2ani 638 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m
)  X.  ( EE
`  m ) ) )  ->  ( (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) ) )
2019imp3a 421 . . . . . . . 8  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) )  /\  ( x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) )  /\  y  =  (
iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
216, 20syl5 30 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  y  =  ( iota_ r  e.  ( EE `  m
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
2221rexlimivv 2827 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
231, 22sylbir 205 . . . . 5  |-  ( ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
2423gen2 1556 . . . 4  |-  A. x A. y ( ( E. n  e.  NN  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
25 eqeq1 2441 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  <->  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
2625anbi2d 685 . . . . . . 7  |-  ( x  =  y  ->  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2726rexbidv 2718 . . . . . 6  |-  ( x  =  y  ->  ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2810, 10xpeq12d 4895 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  m )  X.  ( EE `  m
) ) )
2928eleq2d 2502 . . . . . . . . 9  |-  ( n  =  m  ->  (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) ) )
3028eleq2d 2502 . . . . . . . . 9  |-  ( n  =  m  ->  (
q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  q  e.  ( ( EE `  m )  X.  ( EE `  m ) ) ) )
3129, 303anbi12d 1255 . . . . . . . 8  |-  ( n  =  m  ->  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  <->  ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) ) )
3231, 12anbi12d 692 . . . . . . 7  |-  ( n  =  m  ->  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
3332cbvrexv 2925 . . . . . 6  |-  ( E. n  e.  NN  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. m  e.  NN  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
3427, 33syl6bb 253 . . . . 5  |-  ( x  =  y  ->  ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. m  e.  NN  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
3534mo4 2313 . . . 4  |-  ( E* x E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  A. x A. y ( ( E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
3624, 35mpbir 201 . . 3  |-  E* x E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )
3736funoprab 6162 . 2  |-  Fun  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
38 df-transport 25956 . . 3  |- TransportTo  =  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
3938funeqi 5466 . 2  |-  ( Fun TransportTo  <->  Fun  {
<. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) } )
4037, 39mpbir 201 1  |-  Fun TransportTo
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725   E*wmo 2281    =/= wne 2598   E.wrex 2698   <.cop 3809   class class class wbr 4204    X. cxp 4868   Fun wfun 5440   ` cfv 5446   {coprab 6074   1stc1st 6339   2ndc2nd 6340   iota_crio 6534   NNcn 9992   EEcee 25819    Btwn cbtwn 25820  Cgrccgr 25821  TransportToctransport 25955
This theorem is referenced by:  fvtransport  25958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-z 10275  df-uz 10481  df-fz 11036  df-ee 25822  df-transport 25956
  Copyright terms: Public domain W3C validator