Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv2 Unicode version

Theorem fv2 5520
 Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv2
Distinct variable groups:   ,,   ,,

Proof of Theorem fv2
StepHypRef Expression
1 df-fv 5263 . 2
2 dfiota2 5220 . 2
31, 2eqtri 2303 1
 Colors of variables: wff set class Syntax hints:   wb 176  wal 1527   wceq 1623  cab 2269  cuni 3827   class class class wbr 4023  cio 5217  cfv 5255 This theorem is referenced by:  elfv  5523 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-sn 3646  df-uni 3828  df-iota 5219  df-fv 5263
 Copyright terms: Public domain W3C validator