Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvbigcup Unicode version

Theorem fvbigcup 24513
Description: For sets,  Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
fvbigcup.1  |-  A  e. 
_V
Assertion
Ref Expression
fvbigcup  |-  ( Bigcup `  A )  =  U. A

Proof of Theorem fvbigcup
StepHypRef Expression
1 eqid 2296 . . 3  |-  U. A  =  U. A
2 fvbigcup.1 . . . . 5  |-  A  e. 
_V
32uniex 4532 . . . 4  |-  U. A  e.  _V
43brbigcup 24509 . . 3  |-  ( A
Bigcup U. A  <->  U. A  = 
U. A )
51, 4mpbir 200 . 2  |-  A Bigcup U. A
6 fnbigcup 24512 . . 3  |-  Bigcup  Fn  _V
7 fnbrfvb 5579 . . 3  |-  ( (
Bigcup  Fn  _V  /\  A  e.  _V )  ->  (
( Bigcup `  A )  =  U. A  <->  A Bigcup U. A ) )
86, 2, 7mp2an 653 . 2  |-  ( (
Bigcup `  A )  = 
U. A  <->  A Bigcup U. A )
95, 8mpbir 200 1  |-  ( Bigcup `  A )  =  U. A
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1632    e. wcel 1696   _Vcvv 2801   U.cuni 3843   class class class wbr 4039    Fn wfn 5266   ` cfv 5271   Bigcupcbigcup 24448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-eprel 4321  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-1st 6138  df-2nd 6139  df-symdif 24433  df-txp 24466  df-bigcup 24470
  Copyright terms: Public domain W3C validator