Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvbr0 Structured version   Unicode version

Theorem fvbr0 5744
 Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fvbr0

Proof of Theorem fvbr0
StepHypRef Expression
1 eqid 2435 . . . 4
2 tz6.12i 5743 . . . 4
31, 2mpi 17 . . 3
43necon1bi 2641 . 2
54orri 366 1
 Colors of variables: wff set class Syntax hints:   wo 358   wceq 1652   wne 2598  c0 3620   class class class wbr 4204  cfv 5446 This theorem is referenced by:  fvrn0  5745 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-nul 4330 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454
 Copyright terms: Public domain W3C validator