MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Unicode version

Theorem fvco 5791
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( F  o.  G ) `  A
)  =  ( F `
 ( G `  A ) ) )

Proof of Theorem fvco
StepHypRef Expression
1 funfn 5474 . 2  |-  ( Fun 
G  <->  G  Fn  dom  G )
2 fvco2 5790 . 2  |-  ( ( G  Fn  dom  G  /\  A  e.  dom  G )  ->  ( ( F  o.  G ) `  A )  =  ( F `  ( G `
 A ) ) )
31, 2sylanb 459 1  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( F  o.  G ) `  A
)  =  ( F `
 ( G `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   dom cdm 4870    o. ccom 4874   Fun wfun 5440    Fn wfn 5441   ` cfv 5446
This theorem is referenced by:  fin23lem30  8214  hashkf  11612  hashgval  11613  opfv  24050  xppreima  24051  gsumpropd2lem  24212  stirlinglem14  27793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
  Copyright terms: Public domain W3C validator