MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdiagfn Unicode version

Theorem fvdiagfn 6900
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
Assertion
Ref Expression
fvdiagfn  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( F `  X
)  =  ( I  X.  { X }
) )
Distinct variable groups:    x, B    x, I    x, W    x, X
Allowed substitution hint:    F( x)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 simpr 447 . 2  |-  ( ( I  e.  W  /\  X  e.  B )  ->  X  e.  B )
2 snex 4297 . . . 4  |-  { X }  e.  _V
3 xpexg 4882 . . . 4  |-  ( ( I  e.  W  /\  { X }  e.  _V )  ->  ( I  X.  { X } )  e. 
_V )
42, 3mpan2 652 . . 3  |-  ( I  e.  W  ->  (
I  X.  { X } )  e.  _V )
54adantr 451 . 2  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( I  X.  { X } )  e.  _V )
6 sneq 3727 . . . 4  |-  ( x  =  X  ->  { x }  =  { X } )
76xpeq2d 4795 . . 3  |-  ( x  =  X  ->  (
I  X.  { x } )  =  ( I  X.  { X } ) )
8 fdiagfn.f . . 3  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
97, 8fvmptg 5683 . 2  |-  ( ( X  e.  B  /\  ( I  X.  { X } )  e.  _V )  ->  ( F `  X )  =  ( I  X.  { X } ) )
101, 5, 9syl2anc 642 1  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( F `  X
)  =  ( I  X.  { X }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864   {csn 3716    e. cmpt 4158    X. cxp 4769   ` cfv 5337
This theorem is referenced by:  pwsdiagmhm  14544  pwsdiaglmhm  15913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-iota 5301  df-fun 5339  df-fv 5345
  Copyright terms: Public domain W3C validator