MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimab Unicode version

Theorem fvelimab 5578
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Distinct variable groups:    x, B    x, C    x, F
Allowed substitution hint:    A( x)

Proof of Theorem fvelimab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . . 3  |-  ( C  e.  ( F " B )  ->  C  e.  _V )
21anim2i 552 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  ( F " B ) )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
3 fvex 5539 . . . . 5  |-  ( F `
 x )  e. 
_V
4 eleq1 2343 . . . . 5  |-  ( ( F `  x )  =  C  ->  (
( F `  x
)  e.  _V  <->  C  e.  _V ) )
53, 4mpbii 202 . . . 4  |-  ( ( F `  x )  =  C  ->  C  e.  _V )
65rexlimivw 2663 . . 3  |-  ( E. x  e.  B  ( F `  x )  =  C  ->  C  e.  _V )
76anim2i 552 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  E. x  e.  B  ( F `  x )  =  C )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
8 eleq1 2343 . . . . . 6  |-  ( y  =  C  ->  (
y  e.  ( F
" B )  <->  C  e.  ( F " B ) ) )
9 eqeq2 2292 . . . . . . 7  |-  ( y  =  C  ->  (
( F `  x
)  =  y  <->  ( F `  x )  =  C ) )
109rexbidv 2564 . . . . . 6  |-  ( y  =  C  ->  ( E. x  e.  B  ( F `  x )  =  y  <->  E. x  e.  B  ( F `  x )  =  C ) )
118, 10bibi12d 312 . . . . 5  |-  ( y  =  C  ->  (
( y  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  y )  <->  ( C  e.  ( F " B
)  <->  E. x  e.  B  ( F `  x )  =  C ) ) )
1211imbi2d 307 . . . 4  |-  ( y  =  C  ->  (
( ( F  Fn  A  /\  B  C_  A
)  ->  ( y  e.  ( F " B
)  <->  E. x  e.  B  ( F `  x )  =  y ) )  <-> 
( ( F  Fn  A  /\  B  C_  A
)  ->  ( C  e.  ( F " B
)  <->  E. x  e.  B  ( F `  x )  =  C ) ) ) )
13 fnfun 5341 . . . . . . 7  |-  ( F  Fn  A  ->  Fun  F )
1413adantr 451 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  Fun  F )
15 fndm 5343 . . . . . . . 8  |-  ( F  Fn  A  ->  dom  F  =  A )
1615sseq2d 3206 . . . . . . 7  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
1716biimpar 471 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
18 dfimafn 5571 . . . . . 6  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( F " B
)  =  { y  |  E. x  e.  B  ( F `  x )  =  y } )
1914, 17, 18syl2anc 642 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F " B
)  =  { y  |  E. x  e.  B  ( F `  x )  =  y } )
2019abeq2d 2392 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( y  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  y ) )
2112, 20vtoclg 2843 . . 3  |-  ( C  e.  _V  ->  (
( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B
)  <->  E. x  e.  B  ( F `  x )  =  C ) ) )
2221impcom 419 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )  ->  ( C  e.  ( F " B
)  <->  E. x  e.  B  ( F `  x )  =  C ) )
232, 7, 22pm5.21nd 868 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   _Vcvv 2788    C_ wss 3152   dom cdm 4689   "cima 4692   Fun wfun 5249    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  ssimaex  5584  rexima  5757  ralima  5758  f1elima  5787  ovelimab  5998  tcrank  7554  ackbij2  7869  fin1a2lem6  8031  iunfo  8161  grothomex  8451  axpre-sup  8791  lmhmima  15804  txkgen  17346  mdegldg  19452  ig1peu  19557  efopn  20005  pjimai  22756  ballotlemsima  23074  indf1ofs  23609  nocvxmin  24345  isnacs2  26781  isnacs3  26785  islmodfg  27167  kercvrlsm  27181  isnumbasgrplem2  27269  dfacbasgrp  27273
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator