MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelrn Unicode version

Theorem fvelrn 5699
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
fvelrn  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)

Proof of Theorem fvelrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2376 . . . . 5  |-  ( x  =  A  ->  (
x  e.  dom  F  <->  A  e.  dom  F ) )
21anbi2d 684 . . . 4  |-  ( x  =  A  ->  (
( Fun  F  /\  x  e.  dom  F )  <-> 
( Fun  F  /\  A  e.  dom  F ) ) )
3 fveq2 5563 . . . . 5  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eleq1d 2382 . . . 4  |-  ( x  =  A  ->  (
( F `  x
)  e.  ran  F  <->  ( F `  A )  e.  ran  F ) )
52, 4imbi12d 311 . . 3  |-  ( x  =  A  ->  (
( ( Fun  F  /\  x  e.  dom  F )  ->  ( F `  x )  e.  ran  F )  <->  ( ( Fun 
F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) ) )
6 funfvop 5675 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
7 vex 2825 . . . . . 6  |-  x  e. 
_V
8 opeq1 3833 . . . . . . 7  |-  ( y  =  x  ->  <. y ,  ( F `  x ) >.  =  <. x ,  ( F `  x ) >. )
98eleq1d 2382 . . . . . 6  |-  ( y  =  x  ->  ( <. y ,  ( F `
 x ) >.  e.  F  <->  <. x ,  ( F `  x )
>.  e.  F ) )
107, 9spcev 2909 . . . . 5  |-  ( <.
x ,  ( F `
 x ) >.  e.  F  ->  E. y <. y ,  ( F `
 x ) >.  e.  F )
116, 10syl 15 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  E. y <. y ,  ( F `  x )
>.  e.  F )
12 fvex 5577 . . . . 5  |-  ( F `
 x )  e. 
_V
1312elrn2 4955 . . . 4  |-  ( ( F `  x )  e.  ran  F  <->  E. y <. y ,  ( F `
 x ) >.  e.  F )
1411, 13sylibr 203 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
155, 14vtoclg 2877 . 2  |-  ( A  e.  dom  F  -> 
( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) )
1615anabsi7 792 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1532    = wceq 1633    e. wcel 1701   <.cop 3677   dom cdm 4726   ran crn 4727   Fun wfun 5286   ` cfv 5292
This theorem is referenced by:  fnfvelrn  5700  funfvima  5794  elunirnALT  5821  rankwflemb  7510  dfac9  7807  fin1a2lem6  8076  opfv  23207  gsumpropd2lem  23357  nofv  24696  sltres  24703  bdayelon  24719  nodenselem3  24722  indexdom  25562  dfac21  26312  cncmpmax  26851  stoweidlem27  26924  stoweidlem29  26926  stoweidlem59  26956  afvelrn  27181  eldmrexrn  27246  usgraedg3  27356  nbgraf1olem5  27392  usgrnloop  27467  nvnencycllem  27527  diaclN  31058  dia1elN  31062  docaclN  31132  dibclN  31170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-iota 5256  df-fun 5294  df-fn 5295  df-fv 5300
  Copyright terms: Public domain W3C validator