Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelrnbf Structured version   Unicode version

Theorem fvelrnbf 27666
 Description: A version of fvelrnb 5775 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fvelrnbf.1
fvelrnbf.2
fvelrnbf.3
Assertion
Ref Expression
fvelrnbf

Proof of Theorem fvelrnbf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5775 . 2
2 nfcv 2573 . . 3
3 fvelrnbf.1 . . 3
4 fvelrnbf.3 . . . . 5
5 nfcv 2573 . . . . 5
64, 5nffv 5736 . . . 4
7 fvelrnbf.2 . . . 4
86, 7nfeq 2580 . . 3
9 nfv 1630 . . 3
10 fveq2 5729 . . . 4
1110eqeq1d 2445 . . 3
122, 3, 8, 9, 11cbvrexf 2928 . 2
131, 12syl6bb 254 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wceq 1653   wcel 1726  wnfc 2560  wrex 2707   crn 4880   wfn 5450  cfv 5455 This theorem is referenced by:  refsumcn  27678  stoweidlem29  27755 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-iota 5419  df-fun 5457  df-fn 5458  df-fv 5463
 Copyright terms: Public domain W3C validator