MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveq12i Unicode version

Theorem fveq12i 5610
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1  |-  F  =  G
fveq12i.2  |-  A  =  B
Assertion
Ref Expression
fveq12i  |-  ( F `
 A )  =  ( G `  B
)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3  |-  F  =  G
21fveq1i 5606 . 2  |-  ( F `
 A )  =  ( G `  A
)
3 fveq12i.2 . . 3  |-  A  =  B
43fveq2i 5608 . 2  |-  ( G `
 A )  =  ( G `  B
)
52, 4eqtri 2378 1  |-  ( F `
 A )  =  ( G `  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1642   ` cfv 5334
This theorem is referenced by:  cats1fvn  11598  sadcadd  12740  sadadd2  12742  kur14lem5  24145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-iota 5298  df-fv 5342
  Copyright terms: Public domain W3C validator