Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvfundmfvn0 Unicode version

Theorem fvfundmfvn0 27986
Description: If a class' value at an argument is not the empty set, the argument is contained in the domain of the class, and the class restricted to the argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
fvfundmfvn0  |-  ( ( F `  A )  =/=  (/)  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) )

Proof of Theorem fvfundmfvn0
StepHypRef Expression
1 ianor 474 . . 3  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  <->  ( -.  A  e.  dom  F  \/  -.  Fun  ( F  |`  { A } ) ) )
2 ndmfv 5552 . . . 4  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  (/) )
3 nfunsn 5558 . . . 4  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )
42, 3jaoi 368 . . 3  |-  ( ( -.  A  e.  dom  F  \/  -.  Fun  ( F  |`  { A }
) )  ->  ( F `  A )  =  (/) )
51, 4sylbi 187 . 2  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F `  A )  =  (/) )
65necon1ai 2488 1  |-  ( ( F `  A )  =/=  (/)  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   (/)c0 3455   {csn 3640   dom cdm 4689    |` cres 4691   Fun wfun 5249   ` cfv 5255
This theorem is referenced by:  afvpcfv0  28009  afvfvn0fveq  28013  afv0nbfvbi  28014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fv 5263
  Copyright terms: Public domain W3C validator